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Abstract
How do long-term saving targets affect optimal saving and portfolio choice

decisions? I analyze a continuous time stochastic optimal control and stopping
time model in which the agent may up- or downgrade her utility flow, income
or liquidity constraint at a chosen time at the cost of a monetary payment.
This general framework covers applications such as home purchase, voluntary
retirement, bankruptcy or starting a private business. For general preferences
an analytical solution is provided and it is shown that under the natural
borrowing constraint, the presence of such options increases risk taking and
savings, and this effect is stronger closer to the optimal switching point. The
deviation from optimal policies of Merton’s benchmark model is characterized
as a function of the monetary value of switching states and the expected
subjective discount factor at the time of phase transition.

1 Introduction
An extensive literature has examined household decisions regarding savings and
portfolio choice over the life cycle, starting with Merton (1969) and Samuelson
(1969). A fundamental question behind all models in this field is why households
save at all, as this will also determine their willingness to hold risky assets. In most
models the primary purpose of saving is smoothing consumption across time and
states of nature. However, there exists substantial survey and anecdotal evidence
that some part of saving activity is motivated by the aim of fulfilling long-term
goals, such as buying a house, starting a private enterprise, early retirement or
financing the education of one’s offspring. It is an interesting question how in general
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such motives affect one’s optimal saving and portfolio allocation decisions. One
way of modeling this phenomenon is the following: assume that an individual is
always in one of several discrete states, which affects her utility and determines
her labor market status and ability to borrow. Each of these aspects has a bearing
on saving decisions, as already shown in a sizable literature. However, once it is
possible to switch discrete states, it is also the properties of potential alternative
states that influence one’s current decisions, even if the state switch does not take
place immediately. For example, the potential motive of collecting money for the
down-payment of a house obviously should be taken into account when trying to
understand the saving decisions of renters. How exactly options to switch states
shape current consumption-saving and portfolio choice decisions? How does the
utility gain from potential switches affect expected lifetime utility? It is not a priori
obvious that an interesting answer can be given to these questions in a general
framework. Instead, it could be the case that optimal stopping time decisions affect
a standard portfolio choice model through ways, which depend crucially on the
exact context. In this case for each economic application a separate model would
be required to understand the effects of the possibility of some state switch. The
main contribution of this paper is showing that this is not so: There are general and
intuitive consequences of introducing discrete decisions in an otherwise standard
portfolio choice model. In particular, even the exact functional forms of the optimal
policies’ deviations from the no-switch benchmark solution are independent of the
exact nature of alternatives states.

First, I show that utilizing the Principle of Optimality, instead of optimizing over
an infinite sequence of stopping times representing all potential future state switches,
it is sufficient to solve the optimal saving and portfolio choice problem combined
with optimal stopping only until the first state switch. Following several papers in
the literature of optimal portfolio choice models, this partial optimization problem
is solved by duality methods, marginal utility being the dual continuous state
variable. As opposed to wealth, this choice has a substantial advantage: considering
the optimal policy, due to the presence of transaction costs, the path of wealth is
not necessarily a continuous function. In contrast, state switches optimally take
place such that marginal utilities before and after a phase transition are equalized,
making the dual variable a continuous function of time in optimum. It is a standard
finding that in an interior point, i.e. when no immediate switch is optimal, a
Hamilton-Jacobi-Bellman equation needs to be satisfied, which for the dual problem
simplifies to a linear differential equation in the infinite horizon case. This is in
contrast to the primal problem, which typically leads to a non-linear equation, as
the one investigated in Merton (1969). I provide a full solution of the differential
equation involved and show how free parameters are pinned down by boundary
conditions of the optimal stopping problem in a general setting. Optimal switches
are characterized by critical thresholds: a phase transition is optimal if marginal
utility falls below a lower limit (or wealth goes above a corresponding limit) or if it
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surpasses an upper threshold (corresponding to wealth falling under a critical value).
It turns out that apart from mathematical convenience, dual methods are also

a source of economic intuition: The dual value function is additively separable
into three terms, the first of which stands for expected lifetime utility when no
switching option or borrowing constraint exists (or equivalently in our framework,
the borrowing limit is the natural one). The other two terms represent the effect
of switches taking place when reaching lower and upper boundaries, respectively.
This decomposition provides an easy way to analyze welfare effects of potential
state switches. Crucially, the first term is unaffected by the presence and features
of optimal switch option. Furthermore, the other two terms are independent of
the exact functional form of utility functions and instead they are qualitatively
determined by the stochastic process followed by marginal utility in optimum. In
this paper asset prices, which are the sole source of uncertainty, are assumed to
follow a geometric Brownian motion process and the same property is inherited by
the dual variable in optimum. In this case it turns out that the additional terms in
the utility decomposition are power functions, where the exponents are determined
by parameters of the asset price process and the impatience parameter. It is shown
that apart from multiplicative factors, these functions represent the expected value
of the subjective discount factor when the optimal switches happen. This is how the
uncertainty regarding the arrival of phase transitions is taken into account into the
value function. One general implication of this separation of the dual value function
is the following: If the complete market benchmark model has an analytical solution,
and the sources of uncertainty give rise to analytically tractable extra terms as
geometric Brownian motion does in our case, then the introduction of switching
options or a borrowing constraint does not affect the presence of an analytic solution
for a particular problem. An interesting additional insight is that formally there
is little difference between analyzing switches which are optimal for poor agents
from the effects of borrowing limits. Intuitively, one can think of being borrowing
constrained as a separate state, which decreases the value of not being constrained
in a way that constrained agents are indifferent between the two states.

In addition to values, optimal policies can also be additively separated into one
term driven by the benchmark model with no switches or borrowing limit, and two
others representing these additions. In particular, frictionless net wealth, which is the
sum of financial wealth and discounted labor income is shared between three parts.
The first one finances future consumption in the current state with no borrowing
limit assuming no switch in the future. The two other terms represent financing
needs induced by switches or a borrowing limit, discounted based on the distance
from the relevant boundaries. For the the case of state switches, this financing
demand depends on the difference of human capital across the two involved discrete
states, the transaction cost and finally the difference in wealth levels needed to
maintain the expected optimal utility paths, given the starting value for marginal
utility at the phase transition. On the other hand, when the boundary represents a
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borrowing limit, the corresponding wealth demand equals to the optimal amount of
precautionary saving, relative to the benchmark model with the natural borrowing
constraint. To sum up, the agent optimally dedicates some fraction of her net
wealth to saving towards some goal or for precautionary reasons. The share of
these components from total net wealth is a function of how large financing needs
appear when reaching the boundaries and how soon the boundary is expected to be
achieved.

A similar decomposition for optimal risky investment is also possible. It turns
out that the ratio of risky investments dedicated to staying in the current state
and the part of savings allocated for the same reason, equals the optimal risky
share in the standard models by Merton (1969) and Samuelson (1969). If there
is a borrowing constraint, the corresponding term for risky investment is negative
and hence the total risky share decreases if the agent gets closer to the borrowing
limit and thus the weight of the relevant term is increases. Considering the term
belonging to a switching option relevant for low marginal utility levels (and hence
high wealth), both the allocated risky investment and total savings for this target
are positive. Furthermore, their ratio gives a higher risky share for this high wealth
target component than for the staying component, when the utility function is in
the constant relative risk aversion class. It is unclear, whether the latter conclusion
holds more generally. Finally, for switches which are optimal for a high enough
marginal utility (so low enough wealth), the sign of the effects is ambiguous. If
the considered switch promises higher utility than staying in the benchmark model
with a natural borrowing limit, then its presence increases consumption (through a
negative financing demand) and increases risky investment. This makes the agent to
reach the relevant threshold faster than otherwise. If however this is not true, and
the switch is optimal only when compared to hitting a borrowing limit, its effects
are qualitatively similar to that of limited borrowing, even though quantitatively
smaller.

There already exists a sizable literature investigating the combination of stopping
time problems with portfolio choice. In particular, this literature so far has considered
frameworks where an initial and a final discrete state are given, and the optimal
stopping time decision concerns an irreversible switch from the former to the latter.
The final state typically corresponds to the some variant of the standard model
by Merton. The objects of interest, apart from the stopping decision itself, are
the optimal consumption and portfolio choice policies leading up to the switch.
An early example is Jeanblanc et al. (2004) solving the problem of an indebted
household with a borrowing limit, who optimally files for bankruptcy when her
wealth drops below a critical value. It turns out that the presence of bankrupcty
makes the household consume more and be less averse. However, the agent is still
more risk averse than she would be without a borrowing constraint. In addition,
several papers (Farhi and Panageas (2007), Dybvig and Liu (2010), Choi and Shim
(2006), Choi et al. (2008), Barucci and Marazzina (2012)) analyze how the ability to
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optimally choose the time of voluntary retirement affects portfolio allocation and
saving decisions. They find that retirement is optimal when wealth grows over a
threshold and that the option of early retirement increases risk-taking and savings,
while the effect on consumption depends on how utility from leisure is modeled.
The closest article from this literature to this paper is Jeon and Koo (2021) who
solves the early retirement problem for general utility functions and hence is able to
distinguish which findings of earlier papers depend on particular assumptions on the
utility function and which are generated directly by the optimal stopping decision.
The current paper contributes to this literature in three dimensions. First, I examine
a more general framework where states can freely differ along their felicity functions,
incomes and borrowing limits, and state changes are subject to transaction costs. In
particular, this model includes most above papers as special cases, and can explore
whether different findings of this literature are particular to the economic problem
they investigate. Second, instead of investigating only irreversible transitions and
their effect on optimal policies before the change, I allow for arbitrary switches
between states and it is determined endogenously, whether some of these states
are final in the sense that it is optimal to stay in them forever. In particular, this
means that optimization takes place over a sequence of stopping times instead of
a single one. Finally, I provide an economically more intuitive characterization of
the optimal policies and optimal value than the rest of the literature, relying on a
decomposition of the dual value function.

Another related strand of literature is that of portfolio choice in the presence of
durable goods, starting with the seminal paper of Grossman and Laroque (1990). In
their framework utility is derived from holding a durable good, the owned quantity
of which can only be adjusted subject to a transaction cost. Savings are kept either
in risky or safe assets as in Merton (1969). Optimal durable choice is characterized
by three numbers z < z∗ < z̄. If the ratio of consumption (c) and wealth (a) is in
[z, z̄], the level of the durable good is not adjusted. Whenever c/a is outside of this
range, a new durable level c′ is set such that the c′/a′ = z∗ optimal consumption
ratio is reached. Compared to the no transaction cost case, the consumer behaves
in a more risk averse manner just after purchasing a new durable, and in a less risk
averse manner just before purchasing a new one. This framework of Grossman and
Laroque (1990) has been extended by several papers which found similar results: by
adding non-durable consumption with several utility functional forms as Beaulieu
(1993), Damgaard et al. (2003) and Detemple and Giannikos (1996), considering a
slightly more general structure for transaction costs as Cuoco and Liu (2000), or
applying it to investigate the effects of costs related to housing transactions as Stokey
et al. (1989). A quite different framework is that of Hindy and fu Huang (1993)
who study non-additive preferences featuring local substitution (i.e. consumption
levels at nearby points of time are substitutes), which similarly to the durable good
literature results in step functions as optimal consumption policies. They find a
constant risky share, but which is higher than the one in a comparable Merton
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model. In a sense these models are more general than that of this paper, as they
allow for a continuum of ’discrete’ states, characterized by the level of durable goods.
However, this feature is achieved through assuming a perfect homogeneity in the
model: In some sense therefore, all states are rescaled versions of one another and
hence it hard to investigate the effects of the presence of phase transitions on utility
and optimal policies in a general setting without also redefining the current state,
such as the current paper does. Instead these models are most suited to understand
the role of a certain class of transaction costs in economic decisions.

From the technical point of view, this paper relies most on Karatzas et al. (1986),
Karatzas and Wang (2000) and He and Pagès (1993) who provide mathematically
rigorous treatments of the original Merton problem and two variants with optimal
stopping and borrowing constraints, respectively.

The rest of the paper is structured as follows: Section 2 describes the model
and shows how under some condition the solution of the full sequential model can
be build from the solutions of simpler subproblems. These subproblems are the
subject of Section 3. First, the dual problem is defined following the literature
and its solution is characterized in the current general framework. This is followed
by a thorough discussion of the intuition related to the optimal value and policies.
Section 4 returns to the sequential problem and fills in some gaps between the full
problem and its subproblems, using the results from the previous Section. Next,
an application involving a discrete decision between renting or owning housing is
investigated in Section 5 to provide further intuition on the main results of the paper.
Finally, Section 6 concludes.

2 The Sequential Problem
2.1 Setup
Time is continuous and the agent maximizes expected discounted utility over infinite
time horizon. The agent is always in one of several possible states i ∈ I which
differ in terms of their respective felicity function transforming flow consumption
expenditure to contemporaneous utility, income and borrowing constraint. One can
freely decide the of switches into other states, but switches take place subject to a
transaction cost.

There exist two sources of income: the exogenous flow of labor income and capital
income. Labor income is assumed to be risk-less and depend deterministically on
the state yt = yi ≥ 0 1. There are two means of investment: the risk-free investment
provides a constant r > 0 rate of return over time, while the risky investment gives a
stochastic return (µ+ r) dt+ σ dWt, where Wt is a one-dimensional Wiener-process

1This assumption could most likely be relaxed as in the case of the standard Merton model,
either by an income process driven by Wt as in He and Pagès (1993) or with one introducing an
independent source of uncertainty as in Koo (1998).
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over a complete probability space (Ω,F ,P). I consider the case where µ and σ
are both strictly positive, so the risky assets provides a positive risk premium
compensating for the extra risk. The one risky asset framework is a simplification,
but as long as markets are complete, is without loss of generality. Since the only
source of randomness is Wt, I will often make use of the filtration {Ft}, which is the
filtration generated by Wt.

The only continuous state variable is the amount of financial assets, denoted by
at. At each instant the agent decides about the amount of risky investment ξt, and
consumption expenditures ct. Furthermore, the agent decides about the stopping
times of state switches. Let τk denote the time of the kth switch from a state to
a different one and ik the state after the kth switch. Switching states entails a
transaction cost, which is allowed to depend on the states between which the switch
occurs and is denoted by P (i, j). When being in state i, the amount of assets cannot
be less than the state specific borrowing constraint −bi. We are now in position to
define the set of admissible controls as follows:
Definition 1. (Admissible Controls) The collection of stochastic processes c and ξ
and random variables {τk}∞

i=1 and {ik}∞
i=1 constitute an admissible control if

(i) ct ≥ 0 for all t and both ct and ξt are adapted to filtration {Ft}

(ii) For all t > 0 ∫ t

0
ct dt+

∫ t

0
ξ2

t dt < ∞

holds P almost surely.

(iii) For all k > 0, τk is a stopping time on (Ω,F , {Ft},P) and

τk ≤ τk+1

holds P almost surely. τks are allowed to attain value ∞.

(iv) For all k > 0, ik is an Fτk
-measurable random variable mapping Ω to

{i ∈ I | i ̸= ik−1 and aτk− − P (ik−1, i) ≥ −bi}

(v) There is an {Ft}-adapted wealth process at with a0 given, implicitly defined
by the control variables, i.e. which satisfies the budget constraint∫ t

0
ct dt+at +

∑
τk≤t

P (ik−1, ik) = a0 +yt+ r

∫ t

0
at dt+µ

∫ t

0
ξt dt+σ

∫ t

0
ξt dWt

(1)
and the borrowing constraint

at ≥ −bik
if τk ≤ t < τk+1

P almost surely for all t.

7



The set of admissible controls (c, ξ, {τk}, {ik}) will be denoted by c.
Condition (ii) is a technical requirement assuring that the stochastic integral in

(1) exists. The measurability condition on ik simply means that it should be known
at the time of the kth switch, in which state the switch takes place. Furthermore,
a switch can only happen to a state differing from the previous one and only if
after paying the transaction cost the borrowing constraint is not violated in the new
state. Allowing for the possibility of stopping times τk being infinite for all k > k0 in
practice corresponds to staying in the k0th state for eternity being a feasible policy.

The agent maximizes her exponentially discounted lifetime utility

Vi(a0) = sup
(ct,ξt,{τk},{ik})∈c

E0

[ ∞∑
k=0

∫ τk+1

τk

e−ρtu
(
ct, ik

)
dt
]

(2)

over c, taking i0 = i and a0 ≥ −bi as given. It is understood that τ0 = 0. The
felicity function u(c, i) is increasing and strictly concave in its first argument for
every i ∈ I. It is also assumed that the felicity function is continuously differentiable
in their first argument and the derivatives’ range is (0,∞) for all i.

To make sure that any sort of utility maximization exercise makes sense, we also
have to make sure that no arbitrage is possible in this setup. In standard models,
the existence of a borrowing constraint is in itself sufficient to rule out arbitrage
strategies Cox and fu Huang (1989). However, apart from stochastic returns, in our
framework there is another potential arbitrage machine in the from of transaction
costs. Indeed, so far we made no restriction over the set of P (i, j)s, even though it is
easy to create an infinite source of wealth with an appropriate system of transaction
costs such as P (j, i) = −1 and P (i, j) = 0. In this case repeatedly moving across
states i and j becomes and infinite source wealth. A drastic way of avoiding this
problem would be allowing only non-negative transaction costs. We take a more
lenient approach, since we would like to model situations such as house transactions,
where selling corresponds to a negative transaction cost: Intuitively, this should
work with no danger of arbitrage if due to frictions, the selling price is always lower,
and the buying price is higher than the ’true’ value of the house. This observation
motivates our next definition.
Definition 2. A system of transaction costs {P (i, j) | i, j ∈ I} is called regular if
there exists a set of shadow values {si ∈ R | i ∈ I} corresponding to each state such
that

P (i, j) > sj − si

for all i, j ∈ I.
In the housing example, si would be the frictionless value of the house. This

condition would imply ∑
τk<t

P (ik−1, ik) > max
i∈I

si − si0
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which puts a uniform lower bound on the total cost of switching states, being
equivalent to an upper bound on the total income that can be generated merely by
switching. Another consequence of Definition 2 is∑

τk<t

P (ik−1, ik) > max
i∈I

si − si0 + ϵ · max{k | τk < t}

with 0 < ϵ < mini,j∈I{P (i, j) − sj + si}, which implies that with regular transaction
costs all admissible sequence of stopping times diverges almost surely. Since the
sequence of stopping times is increasing with probability one, this is equivalent to
stopping times not having cluster points, which intuitively means that stopping
times have to be spread over time. Indeed, if the stopping times converged to some
finite t, the left hand side of the budget constraint (1) would diverge, which cannot
be financed almost surely with any admissible policy. This point will be relevant
for one of the assumptions of Theorem 1. In addition to regularity, there is another
desirable, even though less crucial property of transaction costs which simplifies
our discussion. Consider a situation in which the agent moves from state i to j
and then instantly from state j to k. Such a move might be strictly preferred if
P (i, k) > P (i, j)+P (j, k), yet apart from the involved transaction costs state j has no
bearing on the optimal value. In particular, by redefining P (i, k) ≡ P (i, j) + P (j, k)
it is possible to avoid this double transition without changing the optimal value and
the optimal policies apart from erasing the transition through j. This is of some
notational convenience in our later discussion. For the above reasons we make the
following assumption.

Assumption 1. The set of transaction costs is regular and satisfies the triangle
inequality, i.e.

P (i, k) ≤ P (i, j) + P (j, k)

holds for every i, j, k ∈ I.

2.2 Principle of Optimality
Since working with a sequence of stopping times is rather complicated, we take
advantage of the Principle of Optimality. Informally speaking, the Principle of
Optimality states that under some technical conditions, dynamic optimization
problems can be separated into two subproblems by any time threshold. In particular,
an optimal plan has the property that any initial segment of the plan is optimal given
the continuation plan, and that the continuation plan is optimal for the problem
started at the time threshold. It of course depends on the nature of the given problem
what choice of the initial segment works best to characterize the solution. In discrete
time dynamic programming the Bellman equation is derived by separating the first
time period from the rest. In optimal control theory, the Hamilton-Jacobi-Bellman
equation is obtained by considering an infinitesimally small initial segment. It turns
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out that in our current framework an insightful approach is to separate the problem
into two at the first stopping time. Formally, for state i and a given corresponding
continuation value function Ui we can define the

Definition 3. (First Stopping Problem)

Vi(a0) = sup
((ct)τ

0 ,(ξt)τ
0 ,τ)∈ci

E0

[∫ τ

t=0
e−ρtu

(
ct, i
)

dt+ e−ρτUi(aτ )
]

where a0 ≥ −bi is given and ci denotes the set of admissible controls truncated at τ1
when starting in state i.

The following theorem states that under some technical assumptions, once
we obtain the solutions of a system of First Stopping Problems with conforming
continuation value functions such that the suprema are attained, we can obtain a
solution to the full sequential problem. This theorem is an analogue of Theorem 9.2
in Stokey et al. (1989) adapted to our setup 2.

Theorem 1. Suppose that for all i ∈ I, the First Stopping Problem is solved by Vi

with continuation values

Ui(a) = max
j∈I\i

Vj(a− P (i, j)). (3)

Furthermore, assume that for all i, the supremum is attained, i.e. for all a0 ≥ −bi

there exists an admissible control ((ci
t(a0))τ i

0 , (ξi
t(a0))τ i

0 , τ
i) such that

Vi(a0) = E0

[∫ τ i

0
e−ρtu

(
ci

t(a0), i
)

dt+ e−ρτ i

Ui(aτ i)
]

Finally, assume that

E0

[
e−δτn+1Uin

(aτn+1)
]

→ 0 (4)

holds as n → ∞ for all admissible policies. Then

Vi(a0) = Vi(a0)

for all i and an optimal policy of the sequential problem can be built from the given
optimal policies of the First Stopping Problems as follows:

2It is probable that an analogue of their Theorem 9.4. also exists in this framework, i.e. under
some conditions all solutions of the sequential problem solve the system of First Stopping Problems.
This question is not pursued in the current version of this paper.
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(i)
τk+1 = τk + τ ik

and
ik+1 = arg max

j∈I\ik

Vj(aτk+1 − P (ik, j))

for all k ≥ 0.

(ii)

ct(a0) = cik
t−τk

(aτk
)

ξt(a0) = ξik
t−τk

(aτk
)

for all t, where k is the one such that τk ≤ t < τk+1 holds.

Condition (3) means that for each i the relevant continuation value corresponds
to the highest value that can be reached by switching, taking the transaction costs
into account. Here it is understood that Vj(a) = −∞ is a < −bj . Equation (4) is a
transversality condition. There is an important difference however from standard
setups: As convergence is taken along a sequence of stopping times, it is not enough
that the growth of function V is limited along a. It is also necessary that any
admissible sequence of switching times is scattered enough. For example, if the
switching times converge to a finite value, condition (4) cannot hold, except if V is
zero at alim τn

. This is exactly the kind of anomaly prevented by Assumption 1.

Proof. The proof broadly follows that of Theorem 9.2 in Stokey et al. (1989), but
since the environments and technicalities are rather different, I include the full proof.
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Let i0 ∈ I and a0 ≥ −bi0 be arbitrary. Then

Vi0(a0) = sup
(ct)τ

t=0,(ξt)τ
t=0,τ

E0

[∫ τ

0
e−ρtu

(
ct, i0

)
dt+ e−ρτUi0(aτ )

]

≥ E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt+ e−ρτ1Ui0(aτ1)

]

≥ E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt+ e−ρτ1Vi1(Q(i0, i1, aτ1))

]

=E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt+ e−ρτ1 sup

(ct)τ
t=0,(ξt)τ

t=0,τ

E0

[∫ τ

0
e−ρtu

(
ct, i1

)
dt

+ e−ρτUi1(aτ )
∣∣∣a0 = Q(i0, i1, aτ1−)

]]

=E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt+ e−ρτ1 sup

(ct)τ1+τ
t=τ1

,(ξt)τ1+τ
t=τ1

,τ

Eτ1

[∫ τ1+τ

τ1

e−ρ(t−τ1)u
(
ct, i1

)
dt

+ e−ρ(τ)Ui1(aτ1+τ )
∣∣∣aτ1 = Q(i0, i1, aτ1−)

]]

≥E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt+ e−ρτ1Eτ1

[∫ τ1+τ

τ1

e−ρ(t−τ1)u
(
ct, i1

)
dt

+ e−ρ(τ)Ui1(aτ1+τ )
∣∣∣aτ1 = Q(i0, i1, aτ1−)

]]

=E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt
]

+ E0

[
Eτ1

[∫ τ2

τ1

e−ρtu
(
ct, i1

)
dt

+ e−ρτ2Ui1(aτ2)
∣∣∣aτ1 = Q(i0, i1, aτ1−)

]]

=E0

[∫ τ1

0
e−ρtu

(
ct, i0

)
dt+

∫ τ2

τ1

e−ρtu
(
ct, i1

)
dt+ e−ρτ2Ui1(aτ2)

]

where the second line follows from the definition of sup, the third one from condition
(3) and the fourth one from the definition of Vi1 . The fifth line is by the strong
Markov property of Ito processes, the sixth one is obtained again using the properties
of sup. Finally, the seventh line is from defining τ2 = τ1 + τ and the last line is by
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the law of iterated expectations. By induction it can similarly be shown that

Vi0(a0) ≥ E0

[
n∑

k=0

∫ τk+1

τk

e−ρtu
(
ct, ik

)
dt
]

+ e−ρτn+1E0

[
Uin

(aτn+1)
]

By letting n → ∞ using (4) we get

Vi0(a0) ≥ Vi0(a0). (5)

It is easy to verify that the chain of inequalities becomes a chain of equalities by
substituting in the proposed policies implying that the inequality (5) is in fact an
equality when the transversality condition (4) holds.

Before turning our attention to characterize the solution of the First Stopping
Problem, it is useful to point out that thanks to our assumption of constant income,
in a sense the exact value of the borrowing limit is a superfluous parameter. In
particular, given all the parameters that characterize a state, there is a way of
transforming the rest of the parameters such that we can set the borrowing limit to
0 without affecting the optimal value and policies. The intuition is that for liquidity
reasons it is only the difference of wealth and the borrowing limit that matters.
Therefore once the difference in terms of interest income is taken into account, we
can simply erase borrowing at the cost of increasing wealth and changing transaction
costs by the corresponding amount. This results in a slight simplification of the
discussions in the coming section.

Proposition 1. The borrowing constraint bi can be set equal to 0 without loss of
generality. In particular, if we define

P̂ (j, i) = P (j, i) − bi and P̂ (i, j) = P (i, j) + bi ∀j

then
Vi(a) ≡ Vui,bi,yi

(a) = Vui,0,yi−rbi
(a+ bi) ≡ V̂i(a+ bi)

Proof. Suppose ct and ξt are admissible and in particular satisfy the budget constraint
before the switching time from state i:

dat = atr dt+ ξt

(
µdt+ σ dWt

)
− ct dt+ yi dt

with at ≥ −bi. We can rewrite the law of motion using ât = at + bi ≥ 0 as follows

dât = dat = (ât − b)r dt+ ξt

(
µdt+ σ dWt

)
− ct dt+ yi dt

= âtrf dt+ ξt

(
µdt+ σ dWt

)
− ct dt+ (yi − rb) dt

In addition, it is easy to check that the shifts in P̂ compensate for redefining the
wealth variable as â. Therefore the same policies can be financed in the two setups,
which implies identical values and optima.
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3 The First Stopping Problem
3.1 Duality
We first analyze the First Stopping Problem. Apart from the slightly more general
setting, the beginning of this section follows very closely earlier papers such as
Farhi and Panageas (2007), Dybvig and Liu (2010) or Jeanblanc et al. (2004) where
portfolio choice and optimal stopping problems are combined in the context of early
retirement or bankruptcy. On the theoretical side, the solution relies on duality
methods developed in Karatzas and Wang (2000) and He and Pagès (1993) for
problems featuring stopping times and borrowing constraints, respectively. The
following discussion up to Proposition 2 is relatively standard and is reported for the
sake of completeness and readability of the subsequent sections. Given an admissible
policy (c, ξ, τ) define the implied value as

J(a0, c, ξ, τ) = E

[∫ τ

0
e−ρtu(ct) dt+ e−ρτU(aτ )

]
(6)

where U is a given strictly concave, increasing function. Throughout this section it
is assumed that the borrowing limit b is 0. Then we have

V (a) = sup
c,ξ,τ

J(a, ct, ξt, τ) (7)

For any concave function f : X → R we can define its convex conjugate 3 f̃ by

f̃(y) = sup
x∈X

{
f(x) − xy

}
. (8)

The convex conjugate plays an important role in optimization theory and in particular
the construction of dual problems as in this paper. For reference, some useful
standard properties of the convex conjugate operator are collected in Remark 2 in
the Appendix.

Denote by ũ and Ũ the convex conjugate of u and U , respectively. It is perhaps
best to clarify at this point that throughout the paper, for a generic function g, g̃
will denote a dual function to g in some sense, which may or may not be defined
directly as the convex conjugate above. This will be made clear in each instant.

As well-known (Cox and fu Huang (1989)), the current Black-Scholes environment
is arbitrage-free and complete, and thus a unique equivalent martingale measure
exists. The corresponding likelihood ratio process is exp

{
−
∫ t

0 κ dWs − θt
}

where

κ = µ

σ
and θ = κ2

2
3Rigorously speaking, this is the Legendre-Fenchel transform of −f(−x)
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are defined for the sake of obtaining more compact formulas. In this case the
stochastic discount factor process H follows

H(t) = e−rt exp
{

−
∫ t

0
κdWs − θt

}
.

Now we can define

J̃({Xt}, λ, τ) = E

[∫ τ

0

[
e−ρtũ(λeρtXtHt) + λXtHty

]
dt+ e−ρτ Ũ(λeρτXτHτ )

]
(9)

where {Xt} is a decreasing positive adapted process with X0 = 1, and λ > 0 is a
positive real. Note that X is a diminishing term multiplying the standard stochastic
discount factor representing the effect of the borrowing constraint. The following
Lemma establishes a duality relation between J and J̃ .

Lemma 1. If c, ξ and τ constitute an admissible policy, λ > 0 and X is a decreasing,
adaptive, positive process with X0 = 1, then

J(a, ct, ξt, τ) ≤ J̃({Xt}, λ, τ) + λa (10)

and we have equality if and only if

λeρτXτHτ = arg max
y

{U(aτ ) − aτy} (11)

u′(ct) = λeρtXtHt ∀0 ≤ t < τ (12)

a0 = E

[∫ τ

0
Hs(cs − y) ds+Hτaτ

]
(13)

0 = E

[∫ τ

0
at dXt

]
(14)

The conditions for equality are intuitive: (11) and (12) are first order conditions,
stating that instantanious marginal utilities must equal the modified stochastic
discount factor multiplied with the Lagrange-multiplier of the budget constraint.
So far we have not made any assumptions on the differentiability properties of
U , but note that if U is continuously differentiable, then (11) is equivalent to
U ′(aτ ) = λeρτXτHτ . Equation (13) states that the consolidated budget constraint
has to be exhausted with equality, while (14) means that Xt has a locally constant
path when at > 0. Therefore future discount factors are depressed by X along a
given realization of W to the extent that wealth has been constrained along this
path obstructing the transformation of wealth over time. Another source of intuition
for the latter condition is given by a deterministic finite horizon example in Section
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4 of He and Pagès (1993): in that case Xt proves to be identical to the time integral
of the borrowing constraints’ Lagrange multipliers from time t up to final time T .
Naturally, the Lagrange multiplier at time t is zero when the condition is non-binding
at that time, leading to a locally constant Xt.

Define the dual value function as

Ṽ (λ) = sup
τ

inf
{Xt}

J̃({Xt}, λ, τ) (15)

where X and λ are as in the definition of J̃ . Now by Lemma 1 and the properties of
inf and sup we have

V (a) = sup
c,ξ,τ

J(a, ct, ξt, τ) ≤ sup
τ

inf
{Xt},λ

{
J̃({Xt}, λ, τ)+λa

}
≤ inf

λ

{
Ṽ (λ)+λa

}
(16)

We can claim that our original problem is successfully solved if we can determine the
value of the last term, we establish that both inequalities in (16) are in fact equalities
and if we clarify how to produce the optimal policies from the dual value function.
Our strategy to do so is through a verification theorem. We can give conditions on
Ṽ , τ and X such that for all λ we have J̃({Xt}, λ, τ) = Ṽ (λ). Furthermore, for all a
using Ṽ and choosing an appropriate λ, we can build an admissible policy satisfying
all conditions of Lemma 1. Let us now turn our attention on the last term.

Take λ and process Xt as given and define

ZX
t = λeρtXtHt (17)

where the X superscript emphasizes the dependence of ZX on the X process. Now
the dual problem can be formulated as

Ṽ (λ) = sup
τ

inf
{Xt}

E

[∫ τ

0
e−ρt

(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ Ũ(ZX

τ )
]

(18)

subject to

dZX
t

ZX
t

= dXt + (ρ− r) dt− κdWt

ZX
0 = λ

X0 = 1
X is decreasing, adapted and positive.

This is an optimal control problem, but unlike in the case of the primal problem, the
control process is extremely well-behaved. Indeed, we already know from Lemma 1
that in the case of an optimal policy we can expect X to be constant everywhere
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except when the borrowing constraint binds. In addition, the Hamilton-Jacobi-
Bellman equation characterizing the optimal value function is linear and hence easy
to solve, in contrast to that of the primal problem. Before proceeding, note that
V̂ clearly has to be a decreasing function, since increasing λ weakly increases the
set of possible values. This is because X can always jump downward at time 0 to
compensate for an increase in λ, but not the other way round. Furthermore, V̂ can
be shown to be convex, since all functions on the right hand side of (18) are convex.

Before starting to analyze the properties of the solution of the dual problem, it is
important to discuss the issue of the solution’s existence. Since for the case of dual
problems in portfolio theory existence results are standard, and the exact conditions
are somewhat orthogonal to the main focus of this paper, the question of existence is
not treated explicitly here. Instead, it is implicitly assumed that the felicity function
is well-behaved enough to make the dual problem well-defined. The interested reader
is directed to He and Pagès (1993) and Farhi and Panageas (2007) who both present
existence results relying on integrability conditions on the utility functions u and U ,
and whose results can be straightforwardly merged to cover the current setup.4 It
should be noted however, that the conditions in both papers allow for a constant
risk aversion felicity function, if it satisfies the same parametric conditions which
are demanded in this paper as well later on. The solution is characterized by the
following proposition, which on the one hand generalizes Theorem 4 in He and Pagès
(1993) with controllable stopping times, but on the other hand I specialize their
general income and price processes to our simpler setup.

Proposition 2. Consider the infinitesimal generator of Zt

Af(z) = −ρf(z) + (ρ− r)zf ′(z) + θz2f ′′(z)

Suppose that we can find a convex function V̂ (Z) : (0,∞) → R such that

(i) V̂ ∈ C(0,∞) ∩ C1(0,∞) ∩ C2((0,∞) \ ∂D
)

and the second order derivatives
are locally bounded near ∂D, where D is defined as

D := {Z ∈ (0,∞) | V̂ (Z) > Ũ(Z)}; (19)

(ii) V̂ (Z) ≥ Ũ(Z) ∀Z ∈ (0,∞) and

(iii)
max{AV̂ (Z) + ũ(Z) + yZ, V̂ ′(Z)} = 0

for all Z ∈ (0,∞).
4It is possible that there is a direct connection between these integrability conditions assuring

the existence of the solution of the dual problem and Assumption 3 in this paper. This intriguing
question will be investigated in further research.

17



Assume furthermore, that there exists a decreasing, adapted, positive Ito process with
X0 = 1 such that it is almost surely continuous for t > 0 and given an arbitrary
λ > 0 the following conditions hold:

(iv) dXtV̂
′(ZX

t ) = 0 for all t.

(v)
AV̂ (ZX

t ) + ũ(ZX
t ) + yZX

t = 0 ∀t with ZX
t ∈ D.

(vi) The family {V̂ (ZX
τ ) | τ ≤ τD} is uniformly integrable, where τD = inf{t > 0 |

ZX
t /∈ D}.

Then
V̂ (λ) = J̃({Xt, λ, τ}) = Ṽ (λ)

is the solution of the dual problem and τ = τD is an optimal stopping time.
Furthermore, for a0 ≥ 0 given, and choosing λ such that

V̂ ′(λ) = −a0 (20)

holds, the optimal policies of the First Stopping Problem and the corresponding
wealth process are determined as follows:

u′(ct) = ZX
t (21)

ξt = µ

σ2Z
X
t V̂

′′(ZX
t ) (22)

at = −V̂ ′(ZX
t ) (23)

and the optimal stopping times coincide.

Condition (i) implicitly contains the so-called smooth-pasting condition: it states
that the value function is continuously differentiable even on the optimal stopping
boundary. This can be interpreted as a first-order condition with respect to the
stopping time, i.e. the marginal utility in the case of staying and stopping has to
coincide at the optimal switch. As Ṽ ′ will be equal to wealth, (iv) is a version of
the condition that X is constant when the borrowing constraint does not bind. The
Hamilton-Jacobi-Bellman equation in (v) corresponds to

0 = −ρṼ (Z) + Ṽ ′(Z)Z
(
ρ− r

)
+ Ṽ ′′(Z)Z2θ + ũ(Z) + Zy, (24)

which has to hold for all Z ∈ D unless Ṽ ′(Z) = 0. There is a parallel between
the economic intuition and mathematical role of Xt. One the one hand, X adjusts
the stochastic discount factor process such that agents on the borrowing constraint
optimally do not borrow. This is mirrored by the fact that X controls ZX

t so that it
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stays in the region where equation (24) applies. This might be done with a jump at
t = 0 and continuously afterwards. In particular, ZX

t is kept away from the interior
of the region where −V̂ ′(Z) = at = 0. This is feasible by a decreasing process, as
since V̂ is decreasing and convex, it can only be constant over an interval of the
form (Ẑ,∞).

3.2 Characterizing the Solution of the Dual Problem
After seeing how to produce solutions of the original First Stopping Problem from the
solution of the dual problem, it is worth exploring further the differential equation
which has to solved by the dual function on D according to (v). In particular, first
we provide the general solution to (24) and then show how the boundary conditions
implicit in (i) and the integrability condition (vi) pin down the free parameters.
Finally, we investigate how the final functional form depends on whether or not
optimal stops and the borrowing constraint are relevant for a particular problem
and provide some economic intuition for the involved parameters.

Before getting started, we need to discuss the topological properties of set D, the
domain of the Hamilton-Jacobi-Bellman equation. (19) implies that D is an open
subset of the real line, and as such, it can be characterized as a countable union of
disjoint open intervals. Therefore the solution of (24) should be provided by solving
the differential equation separately for each subintervals, according to the boundary
conditions specific to the given subinterval, and then building the full solution by
merging the subsolutions and Ũ appropriately over the full domain. To avoid these
complications in this paper I make the following assumption:

Assumption 2. The First Stopping Problem is such that D is an interval.

One motivation for this assumption is that in most obvious economic applications
any state would be optimal over an interval of wealth levels. Since consumption is a
monotonic function of wealth, this implies an optimal interval in the marginal utility
(Z) space. In addition, extending the analysis below is straightforward to the case
when D is a collection of intervals, however little additional insight could be gained
at a significant cost of clarity.

Therefore we have to solve (24), which is an inhomogeneous second order linear
differential equation in Ṽ , over an interval D of the real line. This means that given
a particular solution, any other solution of (24) on D can be written as the sum of a
particular solution and some solution of the homogeneous equation

−ρṼ (Z) + Ṽ ′(Z)Z
(
ρ− r

)
+ Ṽ ′′(Z)Z2θ = 0 (25)

which is a Cauchy-Euler equation, for which the general solution is known as:

Ṽ hom(Z) = BZφ+ + CZφ− (26)
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where B and C are arbitrary reals and φ+, φ− are the two solutions of the quadratic
equation

θφ2 + (ρ− r − θ)φ− ρ = 0 (27)

so

φ+, φ− =
−(ρ− r − θ) ±

√
(ρ− r − θ)2 + 4ρθ

2θ (28)

which implies that φ− < 0 and φ+ > 0. In fact, we even have φ+ > 1, since by
substituting φ = 1 in equation (27) we get −r < 0, implying that 1 lies in between
the two roots. To proceed and put condition (vi) into use, we need to make sure
that there exists a sufficiently integrable particular solution.

Assumption 3. Equation (24) has a convex particular solution Ṽp over (0,∞)
such that the set of random variables {e−δτ Ṽp(Zτ ) | τ < ∞ is a stopping time} is
uniformly integrable, where Zt denotes the process controlled by a constant Xt = 1
process, i.e.

dZt

Zt
= (ρ− r) dt− κdWt.

In addition, if y = 0, this particular solution is a decreasing function in Z.

Of course, it is of interest whether we can hope Assumption 3 to hold for any
commonly used utility functions. A positive answer regarding constant relative risk
aversion utiliy functions is given in the following proposition:

Proposition 3. Assume that

u(c) = hγ c
1−γ

1 − γ
+ n

with risk aversion parameter γ > 0 satisfying

ρ > (1 − γ)
[
r + θ

γ

]
(29)

and h > 0 and n ∈ R are scale parameters. Then its convex conjugate is

ũ(Z) = γ

1 − γ
hZ1−1/γ + n (30)

and
Ṽp(Z) = γ

1 − γ
hAZ1−1/γ + n

ρ
+ Z

y

r
(31)

with
A = γ

ρ− (1 − γ)
[
r + θ

γ

]
is a particular solution to (24) satisfying the conditions of Assumption 3.

20



To prove this proposition and then to apply the integrability conditions to pin
down free parameters B and C, we will rely on the following lemma characterizing
the uniform integrability properties of discounted power functions of Zt.

Lemma 2. Let α be an arbitrary real number and consider the process e−δtZα
t .

Then

(a) e−δtZα
t is a martingale if and only if α = φ− or α = φ+ and is a supermartingale

iff φ− ≤ α ≤ φ+.

(b) If φ− < α < φ+, then e−δtZα
t converges to 0 in probability as t → ∞. In

addition, the set {e−δτZα
τ | τ < ∞ is a stopping time} is uniformly integrable .

(c) The set {e−δτZ
φ+
τ | τ ≤ τZ is a stopping time} is uniformly integrable with

τZ = inf{t ≥ 0 | Zt ≥ Z} where 0 < Z < ∞.

(d) The set {e−δτZ
φ−
τ | τ ≤ τZ is a stopping time} is uniformly integrable with

τZ = inf{t ≥ 0 | Zt ≤ Z} where 0 < Z < ∞.

(e) The sets {e−δτZ
φ+
τ | τ < ∞ is a stopping time} and {e−δτZ

φ−
τ | τ < ∞ is a stopping time}

are not uniformly integrable.

Proof. For any α, Zα
t follows a geometric Brownian motion and

Zα
t = Zα

0 exp{α(ρ− r − θ)t+ ακWt}

which implies that

E[e−δtZα
t ] = Zα

0 exp{[−ρ+ α(ρ− r − θ) + α2θ]t} (32)

(a) Follows directly from (32) and the definition of φ±.

(b)
E[|e−δtZα

t |] = E[e−δtZα
t ] → 0

when φ− < α < φ+, since in this case −ρ + α(ρ − r − θ) + α2θ < 0. This
means that {e−δtZα

t } converges to 0 in L1 and hence also in probability. By
Vitali’s convergence theorem this is equivalent to set {e−δtZα

t | t ≥ 0} being
uniformly integrable, which property can then be extended to all stopping times,
as e−δτZα

τ = E[e−δtZα
t | Fτ ] and taking conditional expectations with respect

to arbitrary sub-σ-algebras preserves uniform integrability.

(c) Let τ ≤ τZ be arbitrary. Then Zτ ≤ Z and so

0 ≤ e−δτZφ+
τ ≤ e−δτZ

φ+ ≤ Z
φ+

This means that {e−δτZα
τ | τ is a stopping time} is a set of uniformly bounded

random variables and hence is trivially uniformly integrable.
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(d) As (c). Note that φ− < 0 so Zτ ≥ Z implies Zφ−
τ ≤ Zφ− .

(e) Let K > 0 be arbitrary and define

τ = inf{t ≥ 0 | e−δtZ
φ+
t ≥ K}

Then

E[e−δτZφ+
τ 1e−δτ Z

φ+
τ ≥K ] = E[e−δτZφ+

τ ] − E[e−δτZφ+
τ 1e−δτ Z

φ+
τ <K ]

= Z
φ+
0 − 0 = Z

φ+
0

The first term is obtained by the Optional Sampling Theorem for martingales
and the second term is 0 as the event 1e−δτ Z

φ+
τ <K is uniformly zero, as every

geometric Brownian motion is a continuous process. This means that for
any ϵ < Z

φ+
0 , for every K > 0 we can find a stopping time τ such that

E[e−δτZ
φ+
τ 1e−δτ Z

φ+
τ ≥K ] < ϵ does not hold. This implies that the set {e−δτZ

φ+
τ |

τ is a stopping time} is not uniformly integrable. The proof for φ− can be
obtained simply by switching all the φs.

It is worth noting that point (e) of the above Lemma implies that no non-zero
solution of the homogeneous equation satisfies the integrability requirement for
general finite stopping times. This means that if there exists a sufficiently integrable
particular solution, as posited by Assumption 3, it has to be unique. Now we can
turn to proving Proposition 3.

Proof of Proposition 3. The convex dual in (30) is obtained by point (iii) in Remark
2. Simple substitution shows that Ṽp in (31) solves the HJB-equation. Finally, Ṽp

satisfies the integrability requirement being the sum of three functions satisfying the
same condition by (b) in Lemma 2. We already saw that φ− < 1 < φ+ is true and
φ− < 1 − 1

γ < φ+ can also be shown by substituting 1 − 1
γ into (27) under (29).

Notice that the particular solution in the CRRA case contains a separable term
related to y. It is easy to show that this is true in general.

Remark 1. Let Ṽp be a particular solution of (24) satisfying the integrability
condition in Assumption 3. Then for all Z ∈ (0,∞)

Ṽp(Z) = Ṽp0(Z) + Z
y

r

where Ṽp0 is the integrable particular solution of an otherwise identical equation with
y = 0.
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We are finally in position to show how functional forms and parameters for the
dual value function are pinned down by some qualitative properties of the solution.
Theorem 2. Assume that Ṽ is a solution of the dual problem with τ , Xt and
D = (Z,Z) are as in Proposition 2, where Z = 0 and Z = ∞ are allowed.

1. If τ = ∞ (i.e. D = (0,∞)) and y = 0, then Xt must be constant 1 and
B = C = 0, so

Ṽ (Z) = Ṽp(Z) = Ṽp0(Z) ∀Z ∈ (0,∞)

and
V (a0) = Ṽp0(λ) + a0λ ∀a0 ∈ (0,∞)

with Ṽ ′
p,0(λ) = −a0.

2. If τ = ∞ and y > 0, then there exists a Ẑ such that

Ṽ (Z) =
{
Ṽp0(Z) +BZφ+ + Z y

r if Z ≤ Ẑ

Ṽp0(Ẑ) +BẐφ+ + Ẑ y
r if Z ≥ Ẑ

and

Xt = min
{

1, inf
0≤s≤t

Ẑ

Zs

}
∀t ≥ 0. (33)

Parameters B and Z̃ are pinned down such that Ṽ (Z) is twice continuously
differentiable at Ẑ. Finally,

V (a0) = Ṽp0(λ) +Bλφ+ +
(
a0 + y

r

)
λ ∀a0 ≥ 0

with Ṽ ′
p,0(λ) + φ+Bλ

φ+−1 = −
(
a0 + y

r

)
.

3. If D = (0, Z) with Z < ∞, then

Ṽ (Z) =
{
Ṽp0(Z) +BZφ+ + Z y

r if Z ≤ Z

Ũ(Z) if Z ≥ Z

and Xt is constant 1. Parameters B and Z are such that Ṽ (Z) is once
continuously differentiable at Z. Finally,

V (a0) = Ṽp0(λ) +Bλφ+ +
(
a0 + y

r

)
λ ∀a0 ≥ a

with Ṽ ′
p,0(λ) + φ+Bλ

φ+−1 = −
(
a0 + y

r

)
and

V (a0) = U(a0) ∀a0 ≤ a

where
a = −Ṽ ′

p,0(Z) − φ+BZ
φ+−1 − y

r
.
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4. If D = (Z,∞) with Z > 0 and y = 0, then

Ṽ (Z) =
{
Ũ(Z) if Z ≤ Z

Ṽp0(Z) + CZφ− if Z ≥ Z

and Xt is constant 1. Parameters C and Z are such that Ṽ (Z) is once
continuously differentiable at Z. Finally,

V (a0) = Ṽp0(λ) + Cλφ− + a0λ if a ≥ a0 > 0

with Ṽ ′
p,0(λ) + φ−Cλ

φ−−1 = −a0 and

V (a0) = U(a0) if a0 ≥ a

where
a = −Ṽ ′

p,0(Z) − φ−CZ
φ−−1.

5. If D = (Z,∞) with Z > 0 and y > 0, then there exists a Ẑ such that

Ṽ (Z) =


Ũ(Z) if Z ≤ Z

Ṽp0(Z) +BZφ+ + CZφ− + Z y
r if Z ≤ Z ≤ Ẑ

Ṽp0(Ẑ) +BẐφ+ + CẐφ− + Ẑ y
r if Z ≥ Ẑ

and

Xt = min
{

1, inf
0≤s≤t

Ẑ

Zs

}
∀t ≥ 0.

Parameters B, C, Z and Z̃ are pinned down such that Ṽ (Z) is once continuously
differentiable at Z and twice continuously differentiable at Ẑ. Finally,

V (a0) = Ṽp0(λ) +Bλφ+ + Cλφ− +
(
a0 + y

r

)
λ if a ≥ a0 ≥ 0

with Ṽ ′
p,0(λ) + φ+Bλ

φ+−1 + φ−Cλ
φ−−1 = −

(
a0 + y

r

)
and

V (a0) = U(a0) if a0 ≥ a

where
a = −Ṽ ′

p,0(Z) − φ+BZ
φ+−1 − φ−CZ

φ−−1 − y

r

6. If D = (Z,Z) with Z > 0 and Z < ∞,then

Ṽ (Z) =


Ũ(Z) if Z ≤ Z

Ṽp0(Z) +BZφ+ + CZφ− + Z y
r if Z ≤ Z ≤ Z

Ũ(Z) if Z ≥ Z
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and Xt is constant 1. Parameters B, C, Z and Z are pinned down such that
Ṽ (Z) is once continuously differentiable at Z and Z. Finally,

V (a0) = Ṽp0(λ) +Bλφ+ + Cλφ− +
(
a0 + y

r

)
λ if a ≤ a0 ≤ a

with Ṽ ′
p,0(λ) + φ+Bλ

φ+−1 + φ−Cλ
φ−−1 = −

(
a0 + y

r

)
, and

V (a0) = U(a0) if a0 ≤ a or a0 ≥ a.

where

a = −Ṽ ′
p,0(Z) − φ+BZ

φ+−1 − φ−CZ
φ−−1 − y

r

a = −Ṽ ′
p,0(Z) − φ+BZ

φ+−1 − φ−CZ
φ−−1 − y

r

Proof. 1. Assume that Ṽ ′(ZX
t ) = 0 for some time t. Then by Proposition 2

at = 0, but ct =
(
u′)−1(Zt) > 0 which is infeasible as y = 0. This implies

that Ṽ ′(Z) < 0 for all Z ∈ (0,∞) and hence Xt = 1 for all t almost surely.
In this case Zt and ZX

t coincide, (24) has to be solved everywhere, but the
integrability condition would be violated unless B = C = 0 by (e) in Lemma
2, implying Ṽ = Ṽp,0.

2. Since in this case positive consumption can be financed even at a = 0, there
must be some finite Z where Ṽ ′ is zero. Define Ẑ = inf{Z | Ṽ ′(Z) = 0}. Since
Ṽ is decreasing and convex, it has to be constant for Z ≥ Ẑ. Use Ẑ and B to
make Ṽ twice continuously differentiable to satisfy (i) in Proposition 2. Note
that this is feasible with two free parameters, as the continuity of Ṽ itself is
already guaranteed by the functional form. This is in contrast with Case 3., for
example. Defining X as in (33) makes ZX

t and hence e−δτ (ZX
τ )φ+ bounded

from above. Due to this B being non-zero does not affect uniform integrability.
On the other hand, the uniform integrability of Ṽp,0(Zτ ) was assumed. This
property can extended to Ṽp,0(ZX

τ ) with X following (33) by an application of
the reflection principle of the Wiener-process.

3. This time B and Z are set to match values and first derivatives of Ṽ and Ũ .
Uniform integrability holds due to (c) in Lemma 2.

4. This time integrability holds due to (d) in Lemma 2., but otherwise this case
is symmetric to 3.

5. and 6. can be obtained by combining proofs of previous cases.
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Since for the optimal value it is irrelevant if there are no alternative states at all
or there are, but they all happen to be inferior, Case 1. (i.e. no switch is optimal)
corresponds to standard portfolio choice models like Merton (1969) and Samuelson
(1969). This means that Ṽp0 can be thought of as the optimal dual function in a
world without switches and borrowing constraint. The latter point holds since when
income is zero, the borrowing constraint is optimally avoided by the agent, and
hence is irrelevant. Case 2 has been treated in He and Pagès (1993). By Proposition
1 and Remark 1, introducing positive income to Case 1 but allowing for the natural
borrowing constraint b = y

r would simply add the positive term Z y
r to the dual value

function. This means that B represents the effect of a stricter borrowing constraint
relative to the natural one, which intuitively lowers the value function, so we can
expect B < 0. Since φ+ > 1, this deviation from the unconstrained case increases in
Z in a convex pattern, i.e. limited borrowing constraint affects utility relatively more
when marginal utility is high. The upper limit Ẑ represents the fact that in this
case optimal consumption is bounded from below by a positive number and hence
marginal utility is bounded from above. From the technical point of view this bound
is enforced by process X. In particular, X controls ZX

t such that it cannot go over
Ẑ. In case 3. Z represents the marginal utility over which it is optimal to switch into
another state. Now the sign of B is ambiguous, however B surely has to be larger
than in case 2. since the optimal switch implies that changing states provides higher
utility than waiting until reaching the borrowing constraint. A model falling into
this class was analyzed in Jeanblanc et al. (2004). In case 4. C > 0, representing the
extra utility from the option of moving to another state when marginal utility is low
enough, i.e. when being rich enough. Models in cases 4. and 5. have been analyzed
in the sizable early retirement literature. Having understood the functional form of
the dual utility function, we can attempt to investigate how having options to switch
in the future affect optimal policies, combining Theorems 2 and 2. In particular, we
know that in the continuation region initial marginal utility λ is pinned down by

Ṽ ′
p,0(λ) + φ+Bλ

φ+−1 + φ−Cλ
φ−−1 = −

(
a0 + y

r

)
(34)

and λ determines consumption through u′. To obtain a clean formula on risky
investments, we introduce the dual relative risk aversion coefficient as

1
γ̃(λ) = −λṼ ′′(λ)

Ṽ ′(λ)
.

It is easily shown that if Ṽ is a convex conjugate, γ̃(λ) equals the relative risk
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aversion of the primal value function evaluated at
(
V ′)−1(λ).

ξ0 = µ

σ2λṼ
′′(λ) = µ

σ2

[
λṼ ′′

p0
(λ) + φ+(φ+ − 1)Bλφ+−1 + φ−(φ− − 1)Cλφ−−1

]
= µ

σ2

[λṼ ′′
p0

(λ)
Ṽ ′

p0
(λ)

(
Ṽ ′(λ) +

(
Ṽ ′

p0
(λ) − Ṽ ′(λ)

))
+ φ+(φ+ − 1)Bλφ+−1 + φ−(φ− − 1)Cλφ−−1

]
= µ

σ2

[a0 + y
r

γ̃(λ) + φ+

(
φ+ − 1 + 1

γ̃(λ)

)
Bλφ+−1 + φ−

(
φ− − 1 + 1

γ̃(λ)

)
Cλφ−−1

]
For the ease of interpretation, assume temporarily that u is a CRRA utility function
satifying the conditions of Proposition 3. In this case γ̃ = γ and both φ+

(
φ+−1+ 1

γ

)
and φ−

(
φ−−1+ 1

γ

)
are positive. Note that when B = C = 0, we obtain the constant

risky share solution from Merton (1969) and Samuelson (1969). When either B or
C is 0, it is straightforward to infer the qualitative effects of switches on optimal
policies. In Case 2. with B < 0, the presence of the borrowing constraint depresses
both consumption and risky investment keeping a0 and y constant. In Case 3. the
sign of these effects is ambiguous, depending on whether or not the option to switch
is more valuable than being subject to a borrowing constraint. Finally, in Case 4.
the option of optimal switching when rich, decreases consumption, but increases
risky saving. All these above statements can be found in the previously mentioned
papers investigating the corresponding case. There are some shortcomings of this
approach however: First, it is hard to make any general statements on cases 5. and
6. as then B and C are determined jointly and until now, their signs in this case are
unclear. Also, the above discussion of optimal risky investment relied on assuming a
special functional form for utility. Finally, all the above conclusions are qualitative
in nature and hence give no insight on the size of these effects. These problems are
in focus next.

3.3 Decomposition of dual value
Having completed the precise characterization of the dual value function, we turn
to an alternative (albeit not so rigorous) derivation, providing us valuable intuition
on the emergence and role of power functions in the value function. The final
goal is linking the effects of optimal stopping on policy functions to economically
interpretable fundamentals such as the value and expected time of switching.
Considering an arbitrary stopping time τ and a decreasing process X, the candidate
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dual value function can be reorganized as below:

E

[∫ τ

0
e−ρt

(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ Ũ(ZX

τ )
]

= E

[∫ ∞

0
e−ρt

(
ũ(ZX

t ) + yZX
t

)
dt−

∫ ∞

τ

e−ρt
(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ Ũ(ZX

τ )
]

= E

[∫ ∞

0
e−ρt

(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ

(
Ũ(ZX

τ ) −
∫ ∞

τ

e−ρ(t−τ)
(
ũ(ZX

t ) + yZX
t

)
dt
)]

(35)

This representation of dual utility is a replication of the analysis by Farhi and
Panageas (2007) in a somewhat more general setting. The integral on the left is not
a function of τ , but represents the value without any switch. On the other hand, the
second term is the discounted net gain of switching, where Ũ(ZX

τ ) is the gain and∫∞
τ
e−ρ(t−τ)

(
ũ(ZX

t ) + yZX
t

)
dt is the cost of leaving the current state. In particular,

when there is no borrowing constraint and hence X can be ignored, there is a perfect
analogue with exercising an American option as pointed out and discussed in detail
by Farhi and Panageas (2007). I will show below that further insights can be gained
by relying on what we already know about the optimal solution. First assume that
τ is the first exit time of an interval (Z,Z) where the endpoints are allowed to take
values 0 and ∞, respectively. In addition, define X by

Xt = min
{

1, inf
0≤s≤t

Ẑ

Zs

}
∀t ≥ 0,

where Ẑ is a possibly infinite positive number. Denote the first hitting times of the
two endpoints by τ and τ and that of Ẑ by τ̂ . Investigating such concrete policies
has two main advantages. First, in this case expression (35) can be significantly
simplified to an easier to interpret format. In addition, since policies correspond
to real numbers, optimization over this special subset of policies can be performed
simply by elementary calculus instead of relying on stochastic control methods.
Since it was already proven that the optimal policies belong to the subset considered
here, such an analysis is a valid tool to understand the full problem. Given these
candidate policies, with some abuse of notation we can define the corresponding
candidate dual value function as

Ṽ (Z,Z,Z, Ẑ) = E

[∫ τ

0
e−ρt

(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ Ũ(ZX

τ )
]
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Let us rearrange as

Ṽ (Z,Z,Z, Ẑ) = E

[∫ τ∧τ̂

0
e−ρt

(
ũ(Zt) + yZt

)
dt+ 1τ<τ̂e

−ρτ Ũ(Zτ )

+ 1τ>τ̂

(∫ τ

τ̂

e−ρt
(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ Ũ(ZX

τ )
)]

=E

[∫ ∞

0
e−ρt

(
ũ(Zt) + yZt

)
dt+ 1τ<τ̂

(
e−ρτ Ũ(Zτ ) −

∫ ∞

τ

e−ρt
(
ũ(Zt) + yZt

)
dt
)

+ 1τ>τ̂

(∫ τ

τ̂

e−ρt
(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρτ Ũ(ZX

τ ) −
∫ ∞

τ̂

e−ρt
(
ũ(Zt) + yZt

)
dt
)]

=E

[∫ ∞

0
e−ρt

(
ũ(Zt) + yZt

)
dt+ 1τ<τ̂e

−ρτ

(
Ũ(Zτ ) −

∫ ∞

τ

e−ρ(t−τ)
(
ũ(Zt) + yZt

)
dt
)

+ 1τ>τ̂e
−ρτ̂

(∫ τ

τ̂

e−ρ(t−τ̂)
(
ũ(ZX

t ) + yZX
t

)
dt+ e−ρ(τ−τ̂)Ũ(ZX

τ )

−
∫ ∞

τ̂

e−ρ(t−τ̂)
(
ũ(Zt) + yZt

)
dt
)]

=E

[
V̂p,0(Z) + y

r
Z + 1τ≤τ̂e

−ρτ

(
Ũ(Zτ ) − V̂p,0(Zτ ) − y

r
Zτ

)

+ 1τ>τ̂e
−ρτ̂

(
Ṽ (Ẑ, Z, Z, Ẑ) − V̂p,0(Zτ̂ ) − y

r
Zτ̂

)]

where I used the solution from Case 1 in Theorem 2 to represent the appropriate
integrals with Ṽp0 . This could also be done with integrals starting at stopping times
thanks to the strong Markov property of Itô-diffusions. Define

G(Z) = Ũ(Z) −
(
Ṽp0(Z) + y

r
Z
)

denoting the present net value of switching instantly if current marginal utility is Z.
In addition, let

H(Ẑ, Z, Z) = Ṽ (Ẑ, Z, Z, Ẑ) − V̂p,0(Zτ̂ ) − y

r
Zτ̂

be the utility loss from the presence of the borrowing limit when being constrained.
Notice that both quantities are expressed relative a benchmark state in which no
jump options or borrowing limit exist. To be able to get Zτ out of the expectation
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operator we will make use of Zτ =
(
1τ=τ + 1τ=τ

)
Zτ = 1τ=τZτ + 1τ=τZτ as well.

By substituting back,

Ṽ (Z,Z,Z, Ẑ) =Ṽp0(Z) + y

r
Z + E

[
e−ρτ

1τ=min{τ,τ,τ̂}

]
G(Z) (36)

+ E
[
e−ρτ

1τ=min{τ,τ,τ̂}

]
G(Z) + E

[
e−ρτ̂

1τ̂<τ

]
H(Ẑ, Z, Z)

is obtained. Clearly, only one of Z and Ẑ can actually influence the dual value
function at once. Indeed, if for example Z < Ẑ holds, then with Z will be reached
sooner almost surely. This however means that the borrowing limit almost never
binds, hence it is intuitive that it should have no effect of the value either. On the
other hand, if Z > Ẑ, then the borrowing limit would make it impossible to reach Z
and hence the corresponding gain from switching is irrelevant. This also means that
Z can be deleted from being among the arguments of function H.

Since all the above observations hold for an arbitrary triple (Z,Z, Ẑ), they
also have to be true for the optimal one. Therefore we have proved the following
proposition:

Proposition 4. Let Ṽ be the dual value function and (Z,Z, Ẑ) denote the optimal
thresholds as in Theorem 2. Then one of

Ṽ (Z) =Ṽp0(Z) + y

r
Z + E

[
e−ρτ

1τ≤τ̂

]
G(Z) + E

[
e−ρτ

1τ≤τ

]
G(Z) (37)

Ṽ (Z) =Ṽp0(Z) + y

r
Z + E

[
e−ρτ

1τ≤τ̂

]
G(Z) + E

[
e−ρτ̂

1τ̂<τ

]
H(Ẑ, Z) (38)

holds.

The above expressions have an intuitive interpretation: dual utility is additively
separable for a term representing utility without any borrowing limit or switching
options, one term for the expected utility gain when switching downwards and
another term representing either the expected utility gain when switching upwards
or the utility cost of the borrowing limit, respectively. Moreover, both latter terms
are multiplicatively separable into a term representing the gain when switching (G)
or cost of being bound by the borrowing limit (H) and another term for the expected
subjective discount factor at the time of reaching the relevant threshold. These
expectations are formally the Laplace-transforms of first exit times of a geometric
Brownian motion from an interval, such that realizations when the other end of
the interval is hit first, are given 0 value. Fortunately, analytic formulas for these
objects exist and are available in Borodin and Salminen (2003). To emphasize the
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dependence of these expectations on Z, Z∗ and Z∗, where Z ∈ (Z∗, Z
∗) denote

f(Z,Z∗, Z
∗) ≡ E

[
e−ρτZ∗1τZ∗ <τZ∗

]
= Z∗φ+−φ−Zφ− − Zφ+

Z∗φ+−φ−Z
φ−
∗ − Z

φ+
∗

(39)

f(Z,Z∗, Z
∗) ≡ E

[
e−ρτZ∗

1τZ∗ <τZ∗

]
= Z

φ+−φ−
∗ Zφ− − Zφ+

Z
φ+−φ−
∗ Z∗φ− − Z∗φ+

When one of the endpoints is such that it is never hit, we obtain the following special
cases,

f(Z,Z∗,∞) =
(
Z

Z∗

)φ−

(40)

f(Z, 0, Z∗) =
(
Z

Z∗

)φ+

Substituting these formulas into our decompositions (37) and (38), we can make two
observations. First, when in the optimum the Z interval is bounded from only one
side, comparing Theorem 2 with formulas (40) one can find a direct correspondence
between coefficients B and C and economic fundamentals. For instance in case 2.
Z∗ = 0 and Z∗ = Ẑ and B = H(Ẑ,0)

Ẑφ+
where H(Ẑ, 0) denotes the discounted total

utility loss caused by the borrowing constraint at the moment when being at the
borrowing limit. Thus the dual value describes the effect of the borrowing limit
by separating it into two distinct terms: how adverse it is to hit the borrowing
constraint, and a measure of when it is expected to happen the first time. This is
intuitive, since the borrowing constraint only has a bearing on lifetime utility as
long as it actually binds. Similar conclusions hold for cases 3. and 4., but in these
cases stopping times and gains are linked to voluntary switching instead of hitting
the borrowing limit.

Second, when exit times to both directions are relevant, there is no simple link
between up- and downward switches and coefficients B and C, since both formulas
in (39) contain both exponents of Z. Instead, to link properties of optimal policies
to the values and expected times of switches, one must proceed further with the
dual utility function decomposition.

3.4 Decomposition of optimal policies
As we know, marginal utility λ = u′(c0) is determined by a0 = −Ṽ ′(λ), therefore
for example in the B = C = 0 case we have

a0 + y

r
= −Ṽ ′

p0
(λ0). (41)

Remember that Ṽp0(λ) denotes the discounted expected utility from an optimal
policy path under the assumption that the path starting with marginal utility
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λ can be financed by the starting wealth level. Equation (41) then states that
this consumption path can just be supported by a net worth of −Ṽ ′

p0
(λ).Therefore

−Ṽ ′
p0

(λ) represents the wealth demanded to maintain a lifetime discounted utility of
Ṽp0(λ). Hence, interpreting the equations pinning down λ for the general cases

a0 + y

r
= −Ṽ ′

p0
(λ) −G(Z)

∂f(λ, Z, Z)
∂λ

−G(Z)∂f(λ, Z, Z)
∂λ

(42)

a0 + y

r
= −Ṽ ′

p0
(λ) −G(Z)

∂f(λ, Z, Ẑ)
∂λ

−H(Ẑ, Z)∂f(λ, Z, Ẑ)
∂λ

in their current form is difficult, since they contain both monetary terms (a, y/r
and Ṽ ′

p,0) and utility-like terms (G and H). Furthermore, when trying to interpret
ξ0 = µ

σ2λṼ
′′(λ) one would encounter a similar problem. This problem is overcome

by the following proposition:

Proposition 5. Let Ṽ be the dual value function and (Z,Z, Ẑ) denote the optimal
thresholds as in Theorem 2. Then optimal marginal utility λ is pinned down by one
of

a0 + y

r
= −Ṽ ′

p0
(λ) − f(λ, Z, Z)Z

λ
G′(Z) − f(λ, Z, Z)Z

λ
G′(Z) (43)

a0 + y

r
= −Ṽ ′

p0
(λ) − f(λ, Z, Ẑ)Z

λ
G′(Z) − f(λ, Z, Ẑ) Ẑ

λ

∂H(Ẑ, Z)
∂Ẑ

.

Furthermore, the optimal amount of risky investment is determined by

ξ0 = µ

σ2

(−Ṽ ′
p0

(λ)
γ̃(λ) + g(λ, Z, Z)Z

λ
G′(Z) + g(λ, Z, Z)Z

λ
G′(Z)

)
(44)

ξ0 = µ

σ2

(−Ṽ ′
p0

(λ)
γ̃(λ) + g(λ, Z, Ẑ)Z

λ
G′(Z) + g(λ, Z, Ẑ) Ẑ

λ

∂H(Ẑ, Z)
∂Ẑ

)
for the two cases, where

g(Z,Z∗, Z
∗) = (φ− − 1)f(Z,Z∗, Z

∗) −
( Z
Z∗

)φ+ φ+ − φ−(
Z∗
Z∗

)φ− −
(

Z∗
Z∗

)φ+

g(Z,Z∗, Z
∗) = (φ+ − 1)f(Z,Z∗, Z

∗) +
( Z
Z∗

)φ− φ+ − φ−(
Z∗

Z∗

)φ+ −
(

Z∗

Z∗

)φ−

The main message of this Proposition 5 is that both net wealth and risky
investment are additively separable into three parts: One to finance consumption
while being in the current state assuming no borrowing limits, and two others
adjusting for the presence of switching options or the effects of a borrowing limit.
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The intuition for the latter terms is straightforward: Following the analogy with
−Ṽ ′

p0
(λ), let us think of −Ũ(Z)′ as the necessary amount of wealth for an optimal

path starting with marginal utility Z if switching states. This way of interpretation
will be justified in Section 4. In this case −G′(Zτ ) is the additional demand for assets
at time τ generated by exchanging the utility path implied by staying with the one
associated with switching, keeping the marginal utility at time τ as given. Since this
monetary cost is given in terms of time τ assets, we have to discount it to current
times by multiplying with the ratios of marginal utilities at time τ and now. In
addition, the effect of expected delay is taken into account through multiplying with
f and f . Combining these terms, for example − Z

λG
′(Z)f represents the optimal

amount of savings set aside today for the potential downward switch, when current
marginal utility is λ. Similarly, −f Ẑ

λ
∂H(Ẑ,Z)

∂Ẑ
represents the extra savings induced

by the lack of borrowing. Supporting this interpretation, it is easy to show that

−∂H(Ẑ, Z)
∂Ẑ

= −Ṽ ′(Ẑ) + V̂ ′
p,0(Ẑ) + y

r
= −(−V̂ ′

p,0(Ẑ) − y

r
)

holds, which expresses the cost of hitting the borrowing constraint expressed in
monetary terms. Indeed, the right hand side is the negative of the monetary value
of an optimal utility flow started from marginal utility Z̃ assuming income y when
the natural borrowing limit is available. To sum up, the total demand for assets can
be separated into a term representing staying in the current state, and two terms
adjusting for boundaries where eventual switches take place or a borrowing limit
binds. Marginal utility λ and hence current consumption has to adjust such that
the necessary level of wealth to finance all three aims of saving amounts to total net
wealth a+ y/r.

Consider next risky investments: the first term shows that the optimal risky
investment to support future consumption when staying in the current state is
determined as the standard optimal risky share µ

σ2γ̃(λ) multiplied by the amount of
savings allocated for the same purpose. Similarly, we can compute the respective
risky shares pertaining to the components of saving set aside for the time of reaching
any of the boundaries. When there is no switch upwards, the option of switching at
Z generates a risky share of µ

σ2 (1 − φ−) in the respective segment of wealth. Notice
that in the case of CRRA preferences, this is strictly higher than the risky share
of the first component, since φ− < 1 − 1

γ < φ+ is implied by (29). In the presence
of upward switches an additional term appears, further increasing the risky share
in a decreasing manner with respect to the distance from the upper boundary. In
particular, due to this extra term the risky investment demand generated by the
option of downward switch does not converge to 0 in the neighborhood of the upper
boundary, even though f does. As for the opposite situation, consider first again
the simplest case: The risky share of the third segment of wealth is − µ

σ2 (φ+ − 1)
when no downward switch is available or optimal. Therefore the optimal amount of
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risky investment has the opposite sign as savings dedicated for an identical purpose.
Moreover, when a downward switch is also present in the optimal policy, this effect
is strengthened in a manner analogue to the opposite case.

In order to give some more concrete illustration to the above discussion and
explain the source of asymmetries, it is worth considering the possible signs of G′ in
simple cases. First take case 2. from Theorem 2, that is the case of a borrowing
constraint and no optimal switch to another state. Naturally, being at the borrowing
limit the agent is worse off than not being constrained and hence H(Ẑ, Z) < 0. In
addition, ∂H(Ẑ,Z)

∂Ẑ
is also negative, as financing an optimal consumption path starting

with a given marginal utility takes more initial wealth in the presence of borrowing
constraints than without. Hence the extra wealth set aside due the borrowing limit
is positive relative to the unlimited borrowing case, while optimal risky investment is
depressed by the borrowing constraint, which is natural. Next consider case 3, or the
case of optimal switch when marginal utility is high, i.e. wealth is low. In this case
the sign of G(Z) is ambiguous: when G(Z) < 0, then switching provides less utility
than staying ignoring the effects of the present borrowing limit. However, switching
can still be optimal if it provides more utility than waiting in the current state until
hitting the borrowing limit. One important fact however is that in optimum the signs
of G(Z) and G′(Z) are identical, as follows from (47). In particular, when G(Z) < 0,
and the upward switch is not desirable relative to an unconstrained benchmark, but
is still preferred to being constrained, the effects are qualitatively identical to the
Case 2, since G′(Z) is also negative. Of course, keeping the probability of hitting the
respective boundaries constant, the effects are smaller in Case 3 than they would be
without the switching option as in Case 2., since the switch being optimal implies
Z < Ẑ and −G′(Z) < − ∂H(Ẑ,Z)

∂Ẑ
. In contrast, when G(Z) > 0 and hence the switch

even dominates staying in the unconstrained benchmark, G(Z) is also positive. This
induces negative allocated savings which means increased consumption speeding
up the time when the boundary is reached. In addition, risky investment is also
increased in optimum. Finally, consider Case 4., in which the optimal switch takes
place when marginal utility is low enough. In this case G(Z) > 0 always holds,
otherwise setting the stopping time to ∞ would lead to higher expected utility.
Then (48) implies that G′(Z) is negative. This means that the utility flow after
switching is more expensive to finance than the current state, considering marginal
utility fixed at the boundaries. There is hence a trade-off: the new state offer higher
utility, but switching to it involves some sort of monetary sacrifice. In this case
the savings allocated to reaching the boundary is positive, to finance the cost of
switching. This also lowers consumption and hence decreases the expected time of
reaching the boundary. In addition, the risky investment generated by this saving
motive is also positive.

The proof takes advantage of two facts. First, as optimal policies are considered,
first order conditions with respect to Z, Z and Ẑ need to hold. Second, partial
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derivatives of expectations f and f satisfy a useful set of identities. The latter fact
is established in the following Lemma:

Lemma 3. For all Z ∈ (Z∗, Z
∗), the following equalities hold:

Z
∂f

∂Z
= −Z∗

∂f

∂Z∗
− Z∗ ∂f

∂Z∗ (45)

Z
∂f

∂Z
= −Z∗

∂f

∂Z∗
− Z∗ ∂f

∂Z∗

and

Z
∂2f

∂2Z
= Z∗

(
1
Z

∂f

∂Z∗
−

∂2f

∂Z∗∂Z

)
+ Z∗

(
1
Z

∂f

∂Z∗ −
∂2f

∂Z∗∂Z

)
(46)

Z
∂2f

∂2Z
= Z∗

(
1
Z

∂f

∂Z∗
− ∂2f

∂Z∗∂Z

)
+ Z∗

(
1
Z

∂f

∂Z∗ − ∂2f

∂Z∗∂Z

)
where the function arguments (Z,Z∗, Z

∗) are omitted for readability.

Proof. Simple calculation delivers:

−Z
∂f(Z,Z∗, Z

∗)
∂Z

=φ+Z
φ+ − φ−Z

∗φ+−φ−Zφ−

Z∗φ+−φ−Z
φ−
∗ − Z

φ+
∗

=(φ+ − φ−)Z∗φ+−φ−Zφ− − φ+(Z∗φ+−φ−Zφ− − Zφ+)
Z∗φ+−φ−Z

φ−
∗ − Z

φ+
∗

=−(Z∗φ+−φ−Zφ− − Zφ+)(φ−Z
∗φ+−φ−Z

φ−
∗ − φ+Z

φ+
∗ )

(Z∗φ+−φ−Z
φ−
∗ − Z

φ+
∗ )2

+ (φ+ − φ−)Z∗φ+−φ−Zφ−(Z∗φ+−φ−Z
φ−
∗ − Z

φ+
∗ )

(Z∗φ+−φ−Z
φ−
∗ − Z

φ+
∗ )2

− (Z∗φ+−φ−Zφ− − Zφ+)(φ+ − φ−)Z∗φ+−φ−Z
φ−
∗

(Z∗φ+−φ−Z
φ−
∗ − Z

φ+
∗ )2

=Z∗
∂f(Z,Z∗, Z

∗)
∂Z∗

+ Z∗ ∂f(Z,Z∗, Z
∗)

∂Z∗

The second equation in (45) follows from exchanging the roles of Z∗ and Z∗. Finally,
(46) follows from taking the partial derivatives of (45) with respect to Z and then
substituting in (45) again into the derived expressions.

Proof of Proposition 5. Throughout the whole proof, we need to consider the two
cases separately when Z ≤ Ẑ or Z > Ẑ. Differentiate (36) with respect to Z and Z
in the first case and Z and Ẑ in the other one. In case of an interior solution, the
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following first order conditions hold for optimal policies:

0 = G′(Z)f +G(Z)
∂f

∂Z
+G(Z) ∂f

∂Z
(47)

0 = G′(Z)f +G(Z)
∂f

∂Z
+G(Z) ∂f

∂Z
(48)

and

0 = G′(Z)f +G(Z)
∂f

∂Z
+H(Ẑ, Z) ∂f

∂Z
+ ∂H(Ẑ, Z)

∂Z
f (49)

0 = ∂H(Ẑ, Z)
∂Ẑ

f +G(Z)
∂f

∂Ẑ
+H(Ẑ, Z) ∂f

∂Ẑ
(50)

Intuitively, changing any of the boundary values affects the gain at switch and
both expectations of discounted hitting times. In optimum these marginal effects
have to cancel out. When the optimal boundaries are extremal, that is they take
values 0 or ∞, the corresponding terms can be deleted as these boundaries are
almost never reached and the rest of the proof goes through without any change.
Before proceeding, note that H(Ẑ,Z)

∂Z = 0, since H(Ẑ, Z) depends on Z only though
Ṽ (Ẑ, Z, Z, Ẑ) and hence Z is chosen as the maximizer one, the corresponding partial
derivative has to be 0. Of course, the same logic does not go through for Ẑ however,
since Z influences H(Ẑ, Z) through two partial derivatives. Now by adding up Z

times equation (47) (or (49)) and Z times equation (48) (or in the second case Ẑ
times equation (50)) we can obtain

0 = ZG′(Z)f + ZG′(Z)f +G(Z)
(
Z
∂f

∂Z
+ Z

∂f

∂Z

)
+G(Z)

(
Z
∂f

∂Z
+ Z

∂f

∂Z

)
and

0 = ZG′(Z)f + Ẑ
∂H(Ẑ, Z)

∂Ẑ
f +G(Z)

(
Z
∂f

∂Z
+ Ẑ

∂f

∂Ẑ

)
+H(Ẑ, Z)

(
Z
∂f

∂Z
+ Ẑ

∂f

∂Ẑ

)
.

Applying (45) and substituting into (42) evaluated at Z = λ results in (43). By
Theorem 2 optimal risky investment is determined by

ξ0 = µ

σ2

(
λṼ ′′

p0
(λ) + λG(Z)

∂2f(λ, Z, Z)
∂2λ

+ λG(Z)∂
2f(λ, Z, Z)
∂2λ

)
(51)

ξ0 = µ

σ2

(
λṼ ′′

p0
(λ) + λG(Z)

∂2f(λ, Z, Ẑ)
∂2λ

+ λH(Ẑ, Z)∂
2f(λ, Z, Ẑ)
∂2λ

)
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for the two cases. Now observe that the Z,Z, Ẑ satisfying the first order conditions
(47) - (50) are constant in Z. This is because they represent controls affecting
boundaries only: an boundary does not change only because the decision maker
is somewhere else inside the continuation region. (This observation can be easily
checked algebraically as well for (47) and (48), since for example f , ∂f

∂Z and ∂f
∂Z

contain Z through the same factor, which can therefore be canceled from the
equation.) Take now partial derivatives of the first order conditions with respect to
Z:

0 = G′(Z)
∂f

∂Z
+G(Z)

∂2f

∂Z∂Z
+G(Z) ∂2f

∂Z∂Z
(52)

0 = G′(Z) ∂f
∂Z

+G(Z)
∂2f

∂Z∂Z
+G(Z) ∂2f

∂Z∂Z
(53)

and

0 = G′(Z)
∂f

∂Z
+G(Z)

∂2f

∂Z∂Z
+H(Ẑ, Z) ∂2f

∂Z∂Z
(54)

0 = ∂H(Ẑ, Z)
∂Ẑ

∂f

∂Z
+G(Z)

∂2f

∂Ẑ∂Z
+H(Ẑ, Z) ∂2f

∂Ẑ∂Z
(55)

Somewhat parallel to the case with first derivatives, we add up Z/Z times equation
(47) (or (49)), −Z times equation (52) (or (54)), Z/Z times equation (48) (or in the
second case Ẑ/Z times equation (50)) and −Z times (53) (or −Ẑ times equation
(55)) and hence obtain:

0 =
(
Z

Z
f − Z

∂f

∂Z

)
G′(Z) +

(
Z

Z
f − Z

∂f

∂Z

)
G′(Z)

+
(
Z

Z

∂f

∂Z
− Z

∂2f

∂Z∂Z
+ Z

Z

∂f

∂Z
− Z

∂2f

∂Z∂Z

)
G(Z)

+
(
Z

Z

∂f

∂Z
− Z

∂2f

∂Z∂Z
+ Z

Z

∂f

∂Z
− Z

∂2f

∂Z∂Z

)
G(Z)

and

0 =
(
Z

Z
f − Z

∂f

∂Z

)
G′(Z) +

(
Ẑ

Z
f − Ẑ

∂f

∂Z

)
∂H(Ẑ, Z)

∂Ẑ

+
(
Z

Z

∂f

∂Z
− Z

∂2f

∂Z∂Z
+ Ẑ

Z

∂f

∂Ẑ
− Ẑ

∂2f

∂Ẑ∂Z

)
G(Z)

+
(
Z

Z

∂f

∂Z
− Z

∂2f

∂Z∂Z
+ Ẑ

Z

∂f

∂Ẑ
− Ẑ

∂2f

∂Ẑ∂Z

)
H(Ẑ, Z)
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Applying (46) and substituting into (51)

ξ0 = µ

σ2

(
λṼ ′′

p0
(λ) + Z

λ

(
λ
∂f

∂Z
− f

)
G′(Z) + Z

λ

(
λ
∂f

∂Z
− f

)
G′(Z)

)
ξ0 = µ

σ2

(
λṼ ′′

p0
(λ) + Z

λ

(
λ
∂f

∂Z
− f

)
G′(Z) + Ẑ

λ

(
λ
∂f

∂Z
− f

)
∂H(Ẑ, Z)

∂Ẑ

)
obtained which implies the rest of the Proposition’s statements.

Proposition 5 shows that both the net worth and optimal risky investment of the
agent can be decomposed into three terms corresponding to three saving purposes:
First, to finance consumption from labor income and savings assuming staying in
the current discrete state forever. Second, for saving to reach the upper wealth
threshold of switch into an alternative state. The third (possibly negative) term
either corresponds to a similar switching option optimal when wealth is low enough,
or it stands for the precautionary saving generating by a borrowing limit. However,
this decomposition is economically meaningful only if it is stable over time. Namely,
thinking of the three components of net worth by saving purpose as three pockets of
the agent, it should not be necessary to constantly rebalance the wealth across the
pockets as random shocks arrive. Instead, all pockets should be financed separately
as time evolves, using only their respective income. This turns out to be the case
for the decomposition in Proposition 5, which is formalized below.

Proposition 6. Define

â1,t = −Ṽ ′
p0

(Zt)

â2,t = −f(Zt, Z, Z) Z
Zt
G′(Z)

â3,t = −f(Zt, Z, Z) Z
Zt
G′(Z)

or

â3,t = −f(Zt, Z, Ẑ) Ẑ
Zt

∂H(Ẑ, Z)
∂Ẑ
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and

ξ̂1,t = µ

σ2
−Ṽ ′

p0
(Zt)

γ̃(Zt)

ξ̂2,t = µ

σ2 g(Zt, Z, Z) Z
Zt
G′(Z)

ξ̂3,t = µ

σ2 g(Zt, Z, Z) Z
Zt
G′(Z)

or

ξ̂3,t = µ

σ2 g(Zt, Z, Ẑ) Ẑ
Zt

∂H(Ẑ, Z)
∂Ẑ

.

By Proposition 5, we have

at + y

r
= â1,t + â2,t + â3,t

and
ξt = ξ̂1,t + ξ̂2,t + ξ̂3,t.

All three components of this decomposition are separately self-financing in the sense
that

dâ1,t =
(
y + râ1,t − ct

)
dt+ ξ̂1,t

(
µdt+ σ dWt

)
(56)

dâ2,t = râ2,t dt+ ξ̂2,t

(
µdt+ σ dWt

)
(57)

dâ3,t = râ3,t dt+ ξ̂3,t

(
µdt+ σ dWt,

)
(58)

where c is defined by u′(ct) = Zt.

Proof. The proof is a straightforward application of Itô’s Lemma. I particular,
proving equation (56) is along the lines of the proof of Proposition 2, since Ṽp0

satisfies the HJB equation (24). Equations (57) and (58) hold thanks to the functional
forms of f and g and the fact that ψ+ and ψ− satisfy equation (27).

An important consequence of this result is that asking what share of net worth
is allocated for a long term saving goal, or what share of net worth is effectively
unavailable to the agent due to borrowing constraints are conceptually meaningful
questions in this model.

While such a result relating to stopping times or a borrowing constraint is novel,
there exists a formal analogue in classical optimal portfolio choice theory. When the
agent derives utility from remaining wealth at a given final date T and consumption
until time T , it is known that the optimal policies can similarly be decomposed into
those of an agent caring only about wealth at the final date and one only concerned
about consumption up to T , see Theorem 3.7.10 in Karatzas and Shreve (1998) and
the preceding discussion.
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4 Returning to the Sequential Problem
We have solved the First Stopping Problem with a general continuation value function
U . However, in the full problem continuation values are provided by value functions
of other states after taking the transactions costs into account, as in equation (3).
In order to conclude that the results developed for the First Stopping Problem in
Section 3 apply to the subproblems obtained from a full sequential problem presented
in Section 2, one has to check that this U function satisfies the conditions demanded
to utilize to apply the duality methods as in this paper. Assuming that for all i ∈ I,
a solution of the First Stopping Problem exists along line of Theorem 2 exists,

Vi(a) = inf
λ≥0

{
Ṽi(λ) + λa

}
holds for all i, where Ṽi is a decreasing, convex function. Then by point (ii) in
Remark 2, Vi is an increasing, concave function for all states i. Being the composite
of increasing and concave functions, it is then easy to show that for all j ∈ I,
Vj(a − P (i, j)) inherits the same properties. Finally, Ui is the upper envelope of
these functions, to which the same properties extend. More generally, but sacrificing
some analytical tractability, P could be any convex function of wealth such that
∂P (i,j,a)

∂a < 1 holds everywhere. In that case, Ui(a) = maxj∈I\i Vj(a − P (i, j, a))
would still be an increasing concave function and hence the duality approach utilized
in this paper could be applied.

When discussing the intuition behind optimal policies in Section 3.3, it was
suggested that −Ũ ′(Z) is the monetary equivalent of the utility gained when switching
and hence −G′(Z) can be interpreted as the monetary equivalent of the net utility
change. This assumption is justified next, after explicitly computing Ũ , when U
is derived from the set of First Stopping Problems. Since the convex conjugate
function of Vj(a− P (i, j)) is

sup
a

{
Vj(a− P (i, j)) − Za

}
=Vj(a− P (i, j)) − V ′

j

(
a− P (i, j)

)
a
∣∣∣
V ′

j

(
a−P (i,j)

)
=Z

=Vj(a− P (i, j)) − V ′
j

(
a− P (i, j)

)
(a− P (i, j))

− V ′
j

(
a− P (i, j)

)
P (i, j)

∣∣∣
V ′

j

(
a−P (i,j)

)
=Z

=Ṽj(Z) − ZP (i, j)

for all i, j, by point (v) in Remark 2 the dual of the continuation value function is

Ũi = max
j∈I\i

Ṽj(Z) − ZP (i, j). (59)

It is worth mentioning that a nearly as tractable result could also be obtained if P
were allowed to be an affine function of current wealth. Indeed, an example for such
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a framework is Jeanblanc et al. (2004), who assume that when going bankrupt, the
household has to pay a fixed penalty and also loses a certain share of her remaining
wealth in addition. Now we can investigate what terms −G′ consists of. Thanks to
the triangle inequality from Assumption 1, we can assume that from state j there
is no further transition and hence the decomposition from Proposition 4 can be
substituted in for Ṽj . Therefore,

−G′
i(Z) = − Ũ ′

i(Z) −
(

− Ṽ ′
p0,i(Z) − yi

r

)
= −Ṽ ′

p0,j(Z) −
(

− Ṽ ′
p0,i(Z)

)
(60)

− Z∗,j

Z
G′

j(Z∗,j)f(λ, Z∗,j , Z
∗
j ) −

Z∗
j

λ
G′

j(Z∗
j )f(λ, Z∗,j , Z

∗
j ) + yi − yj

r
+ P (i, j)

holds, where with some abuse of notation, G′
j(Z∗

j ) denotes either G′
j(Zj) or ∂H(Ẑ,Z)

∂Ẑ
.

Equation (60) states that −G′ consists of the difference of the wealth levels demanded
to maintain the utility flows in states j and i respectively, the saving needs of the
switching options available from state j (or the effect of a potential borrowing limit)
and finally the net of discounted labor income flows in the two states plus the
transaction cost.

So far it was discussed that the methods and intuition in Section 3 apply
naturally to such First Stopping Problems, which are subproblems of the sequential
optimization problems being the subject of this paper. Next, using the results from
Section 3 it is shown that when transaction costs are regular enough and all felicity
functions belong to the constant risk aversion class, transversality condition (4) is
satisfied automatically and hence by Theorem 1 it is always sufficient to solve the
First Stopping Problems to find a solution of the full sequential problem.

Proposition 7. Suppose that the set of transaction costs satisfies Assumption 1
and for all states i ∈ I the felicity function is of the constant risk aversion type

u(c, i) = hγi

i

c1−γi

1 − γi
+ ni

with γi > 0 satisfying
ρ > (1 − γi)

[
r + θ

γi

]
and hi > 0 and ni ∈ R. Furthermore, assume that the set of First Stopping Problems
is solved by conforming Ui functions as posited among the conditions of Theorem 1.
Then the transversality condition (4) in Theorem 1 also holds.

Proof. As it was discussed in Section 2, Assumption 1 implies that for any admissible
sequence of switching times we have τk → ∞ almost surely. Therefore the tranversality
condition holds if

E0

[
e−δtUin

(at)
]

→ 0
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as t → ∞ for any admissible in. By the definition of U and convex conjugates and
applying Theorem 2

Ui(at) = max
j∈I\i

Vj(at − P (i, j))

= max
j∈I\i

inf
λ
Ṽj(λ) − λP (i, j) + λat

= max
j∈I\i

Ṽj(ZX
t ) − ZX

t P (i, j) + ZX
t Ṽ

′
j (ZX

t )

where ZX
t is the optimally controlled marginal utility process started from ZX

0 such
that Ṽ ′

i0
(ZX

0 ) = a0 holds. For now fix j and consider

Ṽj(ZX
t ) = γj

1 − γj
hjAj(ZX

t )1−1/γj + nj

ρ
+Bj(ZX

t )φ+ + Cj(ZX
t )φ− + yj

r
ZX

t

where Z∗j ≤ ZX
t ≤ Z∗

j with Cj = 0 whenever Z∗j = 0 and Bj = 0 when Z∗
j < ∞.

Then

|Ui(at)| = max
j∈I\i

{ hjAj

1 − γj
(ZX

t )1−1/γj + nj

ρ
+ (1 − φ+)Bj(ZX

t )φ+

+ (1 − φ−)Cj(ZX
t )φ− − ZX

t P (i, j)
}

≤ max
j∈I\i

{
| hjAj

1 − γj
|(ZX

t )1−1/γj

}
+ max

j∈I\i

{ |nj |
ρ

}
+ max

j∈I\i

{
|(1 − φ+)Bj |(Z∗

j )φ+
}

+ max
j∈I\i

{
|(1 − φ−)Cj |(Z∗j)φ−

}
+ ZX

t max
j∈I\i

{
|P (i, j)|

}
Therefore e−δt|Ui(at)| and hence e−δtUi(at) converge to 0 as t → ∞, if e−δt(ZX

t )1−1/γj

and e−δtZX
t do so. This however was already proven in Lemma 2 for the case when

X is constant 1, while the general case can be shown by applying the reflection
principle of Wiener-processes.

5 Example: Owning or renting
To illustrate the uses and limitations of the results derived in this paper to understand
solutions of combined optimal stopping and portfolio choice problems, next we
investigate a concrete example. There are two discrete states representing renting
and owning a home, both of which corresponds to a fixed housing level ĥi with
i ∈ {R,O}. The agent has a Cobb-Douglas utility function over housing and
non-durable goods and a CRRA felicity function over the composite good, i.e.

ui(c) =

(
ĥω

i c
1−ω

)1−γ̂

1 − γ̂
i ∈ {R,H}.
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By defining γ = 1 − (1 − ω)(1 − γ̂) and hi =
( 1−γ

1−γ̂ ĥ
ω(1−γ̂)
i

)1/γ , we can immediately
bring these utility functions in the form of the one in Proposition 3. Assume in
addition that γ satisfies the parameter restriction of the same Proposition. The
transaction costs to move from one state to the other are as follows: buying a house
costs P̂ (R,O) = P and selling it results in a cost of P̂ (O,R) = −αP where 0 < α < 1
represents selling costs as a fraction of the house value. Note that these transaction
costs are regular, for example with sR = 0 and any αP < sO < P . The net income
of renters is the difference of labor income and the rental cost yR = y −m, while
home owners simply obtain the same labor income: ŷO = y. Finally, the two discrete
states differ across their borrowing limits: In particular, renters cannot borrow
bR = 0, while home owners may take a mortgage up to a δ fraction of their home’s
purchase value b̂O = δP . However, by utilizing Proposition 1, we can normalize
bO = 0, if we adjust all other quantities related to owning as well: Define therefore

P (R,O) = (1 − δ)P, P (O,R) = (δ − α)P, yO = y − δPr. (61)

The interpretation of these transformed equations is straightforward. Taking into
account changes in borrowing ability, the true cost of buying a house is only (1 − δ)
times the house price, i.e. the value of the minimal down-payment. Turning this
logic around, when selling the home, one’s borrowing capacity drops by δP which
has to be subtracted from the nominal income from selling. Finally, income in state
O is burdened by interest payments on the mortgage. Of course, this can be offset
by holding more liquid wealth than the borrowing capacity.

Assumption 4. Parameters satisfy

(i)
hR = hO = 1

and

(ii)
α > δ.

Point (i) is assumed for simplicity and it means that the rented and owned home
we consider in this example provide identical utility flows. Setting these values to 1
is a matter of normalization. Point (ii) implies that transaction costs are not too
large in the sense that selling a house results in positive additional liquidity even
when completely indebted. Since by point (i) the two states solely differ in terms
of income and the asymmetry generated by the transactions costs, the problem
becomes very tractable. In particular, it can be shown that in this case only one-way
transitions are present in the solution, i.e. either renting or owning becomes an
endogenous final state from there no transitions are optimal. This is intuitive, since
as the transformed problem clarifies, depending in the relation of yR and yO one
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of the states is uniformly superior if considering the two states in isolation. Since
transitions back and forth involve a wealth loss due to transaction costs simply
staying in the better state of the two remains the best policy even when taking
possible transitions into account.5

Knowing that only one-way transitions can be optimal, we can write the gains
from transitions as follows:

GO(Z) = Z

ẐR

ĤRf(Z, 0, ẐR) + yR − yO

r
− (δ − α)P =

( Z
ẐR

)φ+
ĤR − m

r
+ αP

GR(Z) = Z

ẐO

ĤOf(Z, 0, ẐO) + yO − yR

r
− (1 − δ)P =

( Z

ẐO

)φ+
ĤO + m

r
− P

As the utility effect of hitting the borrowing constraint Ĥ is negative, we can
determine which transition are optimal depending on the relation of price P and
the present value of rental costs m

r .

1. m
r < αP

In this case GR(Z) is always negative, but GO(Z) is positive when Z is
small enough. Therefore it is never optimal to buy a house, but selling is
advantageous when Z is small enough. Note that when δP < m

r < αP , then
yO > yR, therefore without transitions being allowed, it would be better to be
born as a homeowner than as a renter. However, selling one’s home can still
be advantageous, since the income from selling makes up for the lifetime loss
of paying a higher rent than the debt costs before selling.

2. αP ≤ m
r ≤ P

In this case both GR(Z) and GO(Z) are negative for all finite Z, making all
transitions sub-optimal. This is intuitive, since for buying the house one would
need to sacrifice more income at once than the present value of lifetime rental
costs. On the other hand, the income from selling would not cover lifetime
rental costs for the rest of the time.

3. P < m
r

In this case it is never optimal to sell a house, but buying is advantageous
when Z is small enough.

For the sake of illustration let us consider case 3., which perhaps gives rise to the
most intuitive setup: It is more advantageous to own a home than renting, but
buying is optimal only for sufficiently wealthy agents. We are interested in how the
presence of buying affects optimal policies of renters even before the wealth threshold

5When ĥR < ĥO, selling for poor owners and buying for rich renters can be optimal at the same
time. Such a more general case will be discussed in a later version of the paper.
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for optimal buying is reached. In order to visually represent the decomposition of
optimal policies implied by Proposition 5, we first need to compute ĤO, ĤR, ẐO, ẐR

and ZR. This is performed in two steps for both owning and renting. First, being a
final state, ẐO and parameter B of the dual utility function for home owning can
be computed down using to Case 2. in Theorem 2. The corresponding ĤO follows
from ĤO = BOẐ

φ+
O . Having determined the value of home-owning, we obtain the

necessary continuation value when buying as a renter, namely UR and GR. Next,
the dual value function parameters for renting can be computed using the conditions
from Case 5. in Theorem 2. Finally, ĤR is pinned down by comparing the obtained
B-C representation of ṼR with (38). For the sake of comparison, with a similar
strategy I also obtained the solutions of two suitable benchmarks: the renter’s
problem without an option to buy, and the renter’s problem with no borrowing limit
(or equivalently, with the natural borrowing limit) and no buying option. Let us
begin with the latter case, i.e. when the problem collapses into the one described in
Merton (1969). On the left panel of Figure 1, the sum of the two gray areas equals
to net worth, i.e. the sum of wealth and human capital, which in this model simply
equals y/r.6

Figure 1: Optimal consumption, saving (defined as not consumed net worth) and
risky investment policy functions, when no borrowing limit, and no buying option
exists.

Consumption is a linear function of net worth, just as risky investment, which is
depicted on the right.

As shown on Figure 2, this simple picture changes significantly when we add the
borrowing limit to the model.

6The parameters used for this example are presented in Appendix B.
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Figure 2: Optimal consumption, saving (defined as not consumed net worth) and
risky investment policy functions. Borrowing limit present, but no buying option.

As implied by the decomposition in (43) in Proposition 5, the term representing
the borrowing constraint’s effect effectively blocks a portion of net worth from being
used in consumption-saving problem of the renter. Therefore due to the borrowing
limit, the agent considers a part of her net worth absent (the light gray region), and
takes only the rest into account when determining optimal consumption and stock
holdings which otherwise is done exactly as in the previous case. The fraction of net
worth ignored when deciding on consumption is interpreted as precautionary saving.
Note the depressing effect due to the constraint is increasing as wealth getting closer
to 0. Risky investments are composed of two parts according to equation (44): the
first one is a linear function of the resources left after subtracting the borrowing
limit’s effect. The second is an additional negative term depressing risk taking even
further, especially for poorer agents.

Introducing the option to buy a house gives rise one more term from the
decompositions in Proposition 5. Now a portion of net worth is reserved to save
money for the eventual home purchase. As shown in the left panel of Figure 3, this
effect is stronger close to the optimal wealth level to buy (which is the right end of
the x-axis.), while the borrowing limit is more relevant for the poor.

However, due to the presence of the extra terms in the g functions from
Proposition 5, the decomposition of optimal stock holdings is somewhat difficult
to interpret. It is clear that the possibility of buying encourages, while the the
borrowing constraint discourages stock holdings. However, the appearance of the
purchase option changed the strength of the borrowing limit’s effect, due to ZR

being an argument of g. In particular, the depressing effect from the borrowing
limit is not decreasing in wealth anymore. All this makes it somewhat difficult to
disentangle the effects of the option to buy a house from the borrowing limit.
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Figure 3: Optimal consumption, saving (defined as not consumed net worth) and
risky investment policy functions. Borrowing limit and buying option present.

To make the difference in terms of policies more visible, Figure 4 depicts the
percentage changes in consumption and optimal stock holding policies due to the
presence of the house buying option, relative to the policies when no such possibility
was available, but the borrowing limit existed.

Figure 4: Percentage point deviation of consumption and risky investment policies
when buying option is available relative to the case when buying is not allowed.

The saving motive to buy a house decreases consumption over all wealth levels,
and the size of the drop is monotonic increasing in wealth, so as the buying threshold
is getting closer. On the other hand, the effect on stock holdings is not uniform:
while around the borrowing limit the agent becomes more risk averse, closer to the
optimal purchase threshold the agent is more risk seeking. Intuitively, it is optimal
to avoid being stuck on a low wealth level by being more cautious, but later more
risk taking is better in order to accelerate growth.
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6 Conclusion
In this paper I investigate the effect of discrete choices on saving and portfolio choice
decisions in an extension of the classical model of Merton (1969). These discrete
decisions are interpreted as phase transitions and are allowed to alter one’s felicity
function, borrowing limit or income. As in this model the only state variable is
wealth, the optimal timing of discrete transitions is linked to wealth thresholds. The
main contribution is showing that the value and optimal policies can be decoupled
into a part representing a benchmark model without any switching thresholds, and
a part standing for exactly the effect of those. The first term is pinned down by
the functional form of the felicity function corresponding to the current state. On
the other hand, the terms corresponding to boundaries only depend on the value
of reaching the boundaries and some measure of the time it takes to reach them.
In addition, the functional form of these additional terms in the optimal value
and policies is something inherent to the problem and not related directly on the
alternative state into which the transition occurs. The felicity function of other
states only plays a role through determining the ideal switch time and the value of
transition.

In addition, I show that when only one switching boundary is present, the effects
of the presence of the corresponding transition option are tractable and intuitive.
Even when two boundaries are active, the decomposition discussed before provides
some basis for interpretation. Unfortunately, as illustrated in Section 5, for some
important economic problems a full understanding of the involved mechanisms is far
from straightforward, which brings up to the directions where this paper could be
further developed. The decomposition in section 3.3 and later on relies on comparing
switching to staying in a benchmark setup with no borrowing constraint or transition
option. However, for some applications it would be key to evaluate the effect of an
additional option of transition in isolation. Providing an alternative decomposition,
that allows for such an exercise would be valuable addition to this paper. Another
important space of improvement is conceptual. In this version I do not pursue the
question of existence of solutions and instead rely on existence results provided
in slightly different frameworks, which cover the CRRA case, the functional form
used for all examples in this paper. Instead, I would attempt to build an existence
result within my framework. Apart from completeness, this may be interesting if a
condition based on Assumption 3 could be build provided, since it would represent a
’deeper’ property relative to the ones in literature, relying on estimating the utility
function from above by a CRRA function.

Finally, on a more general level, a somewhat surprising feature of the model being
subject of this paper is the existence of an analytical solution in spite of the presence
of uncertainty, a borrowing constraint and discrete decisions. Apart from enabling
the more complete understanding of the economic intuitions behind the problem,
this fact is also of interest from a different , more practical aspect. Since Kaplan
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et al. (2018), a rapidly growing literature in macroeconomics builds heterogeneous
agent models in continuous time. Given the incomplete market nature of these
models, the solution of the household’s optimization problem is obtained by solving
the Hamilton-Jacobi-Bellman numerically, typically with finite difference methods.
If there is way of introducing labor income risk in the framework investigated
in this paper while retaining the property of having a closed-form solution, that
could provide a basis for a heterogeneous agent economy without the usual high
computational cost of solving such models. This question I am planning to address
in future research.
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A Proofs and auxiliary results
Remark 2. Let f be a strictly concave, increasing function over (0,∞). Then its
convex conjugate f̃

(i) is a strictly convex, decreasing function, and

(ii) the dual relation
f(x) = inf

y
{f̃(y) + xy}

holds. In addition, for a given strictly convex, decreasing function f̃ , the f
defined by this expression would be strictly concave and increasing.

In addition, if f is continuously differentiable and the range of its derivative f ′ is
(0,∞), then

(iii)
f̃(y) = f

(
I(y)

)
− yI(y)

where I denotes the inverse function of f ′.

(iv) Furthermore, f̃ is continuously differentiable and

f ′(x) = Ĩ ′(−x)
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and
f̃ ′(y) = −I ′(y)

holds for all x and y, where Ĩ denotes the inverse function of f̃ ′.

Finally, assume that {fi} is a finite set of functions satisfying the same assumptions
as f so far. Define their pointwise maximum F with

F (x) = max
i
fi(x).

Then

(v)
F̃ (y) = max

i
f̃i(y)

and

(vi) F̃ is differentiable at every y such that arg maxi f̃i(y) has only one element.
In particular,

F̃ ′(y) = f̃ ′
arg max f̃i(y)

(y)

for all such y.

Proof of Lemma 1. This proof is essentially a slightly more detailed replication of a
section in the Appendix of Farhi and Panageas (2007). By the definition of convex
conjugates

J(a0, ct, ξt, τ) =E

[∫ τ

0
e−ρtu(ct) dt+ e−ρτU(aτ )

]

≤E

[∫ τ

0
e−ρtũ(λeρtXtHt) dt+ e−ρτ Ũ(λeρτXτHτ )

+ λ
(∫ τ

0
ctXtHt dt+ aτXτHτ

)]
After a slight reorganization apply integration by parts on the product of Xt and
Et[
∫ τ

t
Hs(cs − y) ds+Hτaτ ]. We use that X0 = 1 and that the quadratic covariation

term is 0, since X is a process with bounded total variance.∫ τ

0
ctXtHt dt+ aτXτHτ =

∫ τ

0
yXtHt dt+ aτXτHτ +

∫ τ

0
(ct − y)XtHt dt

=
∫ τ

0
yXtHt dt+ E

[ ∫ τ

0
Ht(ct − y) dt+Hτaτ

]
+
∫ τ

0
Et

[ ∫ τ

t

Hs(cs − y) ds+Hτaτ

]
dXt
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To proceed we need two inequalities involving the discounted value of future net
spending. The consolidated budget constraint evaluated between time t and stopping
time τ is ∫ τ

t

Hs(cs − y) ds+Hτaτ = Htat +
∫ τ

t

Hs

[
σξs − κas

]
das (62)

the last term is a supermartingale (being a local martingale with a lower bound) so
with t = 0

E

[∫ τ

0
Hs(cs − y) ds+Hτaτ

]
≤ a0 (63)

i.e. the present value of future net spending has to be lower than current wealth.
On the other hand from

0 ≤ Htat =
∫ τ

t

Hs(cs − y) ds+Hτaτ −
∫ τ

t

Hs

[
σξs − κas

]
das

we get

0 ≤ E

[∫ τ

t

Hs(cs − y) ds+Hτaτ

]
Putting things together:

J(a0, ct, ξt, τ) =E

[∫ τ

0
e−ρtu(ct) dt+ e−ρτU(aτ )

]
≤

E

[∫ τ

0
e−ρtũ(λeρtXtHt) dt+ e−ρτ Ũ(λeρτXτHτ ) + λ

∫ τ

0
yXtHt dt

+ λ

∫ τ

0
Ht(ct − y) dt+Hτaτ

+ λ

∫ τ

0
Et

[ ∫ τ

t

Hs(cs − y) ds+Hτaτ

]
dXt

]
≤

E

[∫ τ

0
e−ρtũ(λeρtXtHt) dt+ e−ρτ Ũ(λeρτXτHτ ) + λ

∫ τ

0
yXtHt dt

+ λa0 + 0
]

and it is apparent that equality follows under conditions (11)-(14), where for (12)
point (iii) or Remark 2 was used. In particular, Equation (14) is sufficient for
equality in the last line since if the budget constraint is exhausted until τ it has to
be exhausted in all subintervals as well.
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Proof of Proposition 2. The first task is to show that given process X, τD solves
the optimal stopping problem for all λ and that the corresponding J̃ coincides with
V̂ . The proof of this part is omitted, since it is a straightforward modification of
standard optimal stopping and stochastic control results (see for example Theorems
10.4.1 and 11.2.2 in Øksendal (2000) for the cases when τD < ∞ and τD = ∞,
respectively). The only difference is the presence of the additional object Xt and
the related condition (iii) making sure that the only term containing Xt drops out.
The rest of the proof broadly follows Theorem 4. in He and Pagès (1993), apart
from the stopping time and is reported below.

First assume that λ /∈ D. In that case it is optimal to stop immediately in the
dual problem, and therefore V̂ (λ) = Ũ(λ) and also V̂ ′(λ) = Ũ ′(λ). Let us consider
stopping immediately in the primal problem as well, which gives us value U(a0).
By the definition of Ũ and (20) the chain of inequalities in (16) holds with equality,
hence τ = 0 must indeed optimal in the primal problem as well.

Now assume that λ ∈ D and therefore ZX starts in the continuation region. By
the assumptions of Proposition 2, V̂ is continuously differentiable and hence the
second inequality holds as an equality. To show the same for the first inequality
we rely on Lemma 1. In particular, we have to show that the proposed policies are
admissible and equations (11)-(14) are satisfied.

First note that the smoothness conditions on V̂ imply the integrability conditions
on ct and ξt and both processes are adapted. Second, since the right hand side of
(24) is constant over D, its derivative by Z has to be 0, implying

0 = − ρV̂ ′(Z) + V̂ ′(Z)
(
ρ− r

)
+ V̂ ′′(Z)Z

(
ρ− r

)
+ V̂ ′′′(Z)Z2θ

+ 2V̂ ′′(Z)Zθ + ũ′(Z) + y

= − rV̂ ′(Z) + V̂ ′′(Z)Z
(
ρ− r + 2θ

)
+ V̂ ′′′(Z)Z2θ − ct + y (64)

Applying Ito’s Lemma, and substituting in equation (64) we get

ct dt− y dt− dV̂ ′(ZX
t )

= ct dt− y dt−
(

(ρ− r − ψt)ZX
t V̂

′′(ZX
t ) + θ(ZX

t )2V̂ ′′′(ZX
t )
)

dt+ κZX
t V̂

′′(ZX
t ) dWt

=
(

− rV̂ ′(ZX
t ) + 2θZX

t V̂
′′(ZX

t )
)

dt+ κZX
t V̂

′′(ZX
t ) dWt

=
(
rat + µξt

)
dt+ σξt dWt

where we used dXtV̂
′′(ZX

t ) = 0, which follows from dXtV̂
′(ZX

t ) = 0 and the fact
that V̂ is decreasing and convex. This implies the budget constraint∫ t

0
cs ds+ at = a0 +

∫ t

0

(
y + ras + µξs

)
ds+ σ

∫ t

0
ξs ds
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for all t < τD and thus admissibility. It is standard to show that the latter result
also implies the consolidated budget constraint (13).

Next note that (11) follows from (iv) in Remark 2 by aτ = −V̂ ′(Zτ ) = −Ũ ′(Zτ ).
Equation (12) was assumed. Finally, (14) follows from (iv) in Proposition 2 and the
budget constraint at = −V̂ ′(ZX

t ) ≥ 0 holds as V̂ is a decreasing function.

B Parameters used in Section 5

γ r µ σ ρ y R P β

3 0.03 0.05 0.14 0.05 1 0.7 17.5 0.85

Table 1: Parameters used for the example in Section 5. R and P are both chosen
approximately twice as large as empirically plausible values, to make effects more
visible.
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